2022 (6) العدد (6) العدد العلمية _ سلسلة العلوم الهندسية المجلد (6) العدد (6) تعدد (6) العدد Tartous University Journal for Research and Scientific Studies - engineering Sciences Series Vol. (6) No. (6) 2022

تحسين طاقة إشعاع هوائى تجزيئي مطبوع باستخدام التوزع التجزيئي لتراكيب الميتاماتيريال ضمن طبقة أساس الهوائي

د.م. السموءل صالح * د.م. صادق على ** م. أمجد سعيدى * * * (تاريخ الإيداع 4/21 /2022 . قُبل للنشر في 202/6/30)

□ ملخّص □

برز خلال السنوات الأخيرة اهتماماً كبيراً بالأبحاث المتعلقة بطرق تحسين بارامترات الهوائيات المطبوعة، خاصة فيما يتعلق بطاقة إشعاعه، وذلك من أجل مواكبة التطور السريع في تقنيات الاتصالات اللاسلكية (WiFi, WLAN). (ISM)

يقدم هذا البحث بنية جديدة لتحسين طاقة الإشعاع لهوائي تجزيئي مطبوع يعمل ضمن المجال الترددي (6-4). وذلك باستخدام التوزع التجزيئي لتراكيب الميتاماتيريال (التراكيب سالبة معامل الانكسار) ضمن طبقة أساس الهوائي المقترح، بحيث نحصل على هوائي مطبوع يحقق كفاءة عالية مناسبة لتطبيقات الاتصالات اللاسلكية.

HFSS (High Frequency Structure تم تصميم وتحليل المهوائي المقترح باستخدام المحاكي HFSS (High Frequency Structure (Simulation)، واستخدمنا برنامج الماتلاب (Matlab) من أجل مقارنة كفاءة المهوائي قبل وبعد إضافة تراكيب الميتاماتيريال.

الكلمات المفتاحية: بارامترات الهوائي المطبوع، تراكيب الميتاماتيريال، معامل انكسار سالب، هندسة تجزيئية.

أستاذ في قسم هندسة الاتصالات – كلية الهندسة الميكانيكية والكهربائية-جامعة تشرين .

^{••} أستاذ مساعد في قسم هندسة الاتصالات – كلية الهندسة الميكانيكية والكهربائية-جامعة تشرين.

^{•••} طالب دراسات عليا (دكتوراه) – قسم هندسة الاتصالات – كلية الهندسة الميكانيكية والكهربائية – جامعة تشرين.

مجلة جامعة طرطوس للبحوث والدراسات العلمية _ سلسلة العلوم الهندسية المجلد (6) العدد (6) تعدد (6) Tartous University Journal for Research and Scientific Studies - engineering Sciences Series Vol. (6) No. (6) 2022

Radiation Energy Enhancement of a Printed Fractal Antenna Using Fractal Metamaterial Structures in the substrate of the antenna

Dr. Eng. El-Samau'al Saleh* Dr. Eng. Sadiq Ali** Eng. Amjad Saedy***

(Received 21/4/ 2022 . Accepted 30/6/2022)

\square ABSTRACT \square

In recent years, there has been great interest in research related to ways to improve the parameters of the printed antennas, especially with regard to antenna radiation energy, in order to keep pace with the rapid development in wireless communication technologies (WiFi, WLAN, ISM....).

This work presents a new structure to improve the radiation energy of a printed fractal antenna in the (4-6) GHz frequency range, using fractal negative refractive index structures (Metamaterials-Mms) in the substrate of the proposed antenna, so that we get a printed antenna which achieves high efficiency for wireless communication applications.

The proposed antenna was designed and analyzed using HFSS simulator, Matlab program was also used to compare the antenna efficiency before and after adding the metamaterial structures.

Keywords: Fractal Geometry, Metamaterial, Negative Refractive Index, Parameters of the Printed Antenna.

[•]Professor in the Department of Communication Engineering - College of Mechanical and Electrical Engineering - Tishreen University .

^{••}Assistant Professor in the Department of Communication Engineering - College of Mechanical and Electrical Engineering - Tishreen University.

^{•••} Postgraduate student (PhD) - Department of Communication Engineering - College of Mechanical and Electrical Engineering - Tishreen University .

1- المقدمة

تُستخدم الهوائيات المطبوعة (Printed Antennas) بشكل واسع في تجهيزات الاتصالات اللاسلكية لما تتميز به من بنية بسيطة وتكلفة منخفضة [1]، إلا أن هذه الصفات لا تكفي لمواكبة التطور الدائم في تقنيات الاتصالات اللاسلكية خاصة تقنيات الانترنت ونقل المعلومات التي تتطلب تصميم هوائيات تحقق كفاءة عالية مناسبة لتطبيقات الصوت والفيديو.

أدى هذا النقدم النقني الكبير في مجال الاتصالات اللاسلكية إلى تعدد طرق تصميم وتحسين كفاءة الموائيات المطبوعة، خاصة فيما يتعلق بنسبة طاقة إشعاع الموائي إلى طاقة تغذيته.

تُعتبر الهندسة التجزيئية (Fractal Geometry) من أهم فروع الرياضيات التطبيقية الحديثة المستخدمة في تصميم الهوائيات المطبوعة [2,3]، يُعرف الجسم التجزيئي بأنه شكل هندسي يتصف بخاصية التشابه الداخلي ويتولد بالتجزيء، ومن أهم التراكيب التجزيئية المستخدمة في تصميم الهوائيات المطبوعة هي شريط كانتور وسجادة سربينسكي [4].

جذبت الخصائص الكهرومغناطيسية لتراكيب الميتاماتيريال (Metamaterials Mms) انتباه العلماء، وتنتج هذه الخصائص عن تفاعل الحقل الكهرومغناطيسي مع بنية تراكيب الميتاماتيريال، ويمكن التحكم بها من خلال التحكم ببنية وأبعاد هذه التراكيب [5].

تم استخدام هذه التراكيب في بنية الهوائيات المطبوعة لتحسين كفاءتها لدورها الكبير في تقليل الضياعات وتحسين طاقة الإشعاع، وذلك من خلال التحكم بمجال إشعاع الهوائي المطبوع والاستفادة من الأمواج الأمامية والخلفية المتولدة [6].

2- مشكلة البحث

تكمن المشكلة في كيفية تحسين طاقة الإشعاع للهوائي المطبوع باستخدام الهندسة التجزيئية وتراكيب الميتاماتيريال، بحيث نحصل على هوائي مطبوع يحقق أفضل كفاءة مناسبة لتطبيقات الاتصالات اللاسلكية وبأقل عدد ممكن من درجات التجزيء.

3–أهمية البحث وأهدافه

تُعتبر الهوائيات المطبوعة عنصراً أساسياً في تجهيزات الاتصالات اللاسلكية، الأمر الذي أدى إلى استمرار التنافس في تحسين كفاءة هذه الهوائيات، نظراً لأهمية الخدمات العلمية والعملية التي تقدمها تطبيقات الاتصالات اللاسلكية في المجالات العلمية والصناعية والطبية.

هدف البحث هو تصميم بنية جديدة لهوائي تجزيئي مطبوع يحقق كفاءة عالية مناسبة لتطبيقات الاتصالات اللاسلكية باستخدام الهندسة التجزيئية وتراكيب الميتاماتيريال.

4– مواد وطرائق البحث 1-4 الهوائي المطبوع 4–1–1 بنية الهوائي المطبوع:

يتكون الهوائي المطبوع من رقعة معدنية أبعادها (W, L) سماكتها (t) كما هو موضح في الشكل (1)، مطبوعة على طبقة أساس عازلة (Dielectric Substrate) ثابت عازليتها er وارتفاعها h ، ويوجد تحت طبقة الأساس طبقة معدنية تعبر عن مستوي الأرضي (Ground Plane)، وتكون الرقعة المشعة بشكل مربع أو مستطيل أو دائري [1,7].

4-1-4 طاقة إشعاع الهوائى المطبوع

تزداد طاقة إشعاع الهوائي المطبوع بنقصان الطاقة المنعكسة من الهوائي إلى المنبع وبزيادة تطابق الممانعة بين نظام التغذية والهوائي، لذلك نتم دراسة طاقة الإشعاع بدراسة قيمة معامل الانعكاس أو خسارة العودة (Return (Loss) وقيمة نسبة الأمواج المستقرة Voltage Standing Wave Ratio) VSWR) بدلالة ترددات العمل [1].

معامل الانعكاس أو خسارة العودة: يُعبر هذا البارامتر (S₁₁) عن نسبة الطاقة المنعكسة من الهوائي إلى طاقة تغذيته، أي أن نقصان معامل الانعكاس يعني نقصان الطاقة المنعكسة من الهوائي إلى المنبع وبالنتيجة زيادة طاقة إشعاعه[1] .

VSWR: تعتبر قيمة VSWR مقياس لعدم تطابق الممانعة بين الهوائي المطبوع ونظام التغذية، أي مقياس لمدى كفاءة نقل الطاقة من المصدر عبر خط النقل إلى الهوائي، وبالتالي كلما كانت قيمة هذا البارامتر أعلى كلما كان عدم التطابق أعلى، ويُحدد على أنه النسبة بين أعلى جهد إلى أدنى جهد بين مصدر التغذية والهوائي، ومن أجل تحقيق مطابقة جيدة للهوائي يجب أن تكون قيمة VSWR أكبر من 1 وأقل من 2 [1].

يعبر عن قيمة VSWR بدلالة معامل الانعكاس S₁₁ بالمعادلة الرياضية التالية:

$$VSWR = \frac{V_{max}}{V_{min}} = \frac{1 + |S_{11}|}{1 - |S_{11}|} \tag{1}$$

Fractal Geometry) الهندسة التجزيئية (2-4

تُستخدم الهندسة التجزيئية في تصميم الهوائيات المطبوعة، حيث يتم تجزيء رقعة الهوائي إلى أجزاء متشابهة وبشكل هندسي مشابه للرقعة الأساسية، وذلك للحصول على بنية تجزيئية متعددة الأطوال الفعالة من أجل توليد ترددات رنين مختلفة حسب الأطوال الفعالة في البنية التجزيئية المقترحة [3,4].

يُوصف الجسم التجزيئي بمعاملين أساسيين هما درجة التجزيء(S) والبعد التجزيئي (D)، تُعبر درجة التجزيء عن عدد مراحل تجزيء الجسم، ويُحسب البعد التجزيئي باستخدام المعادلة [3]:

D =
$$\ln(N)/\ln(1/\rho)$$
 (2)
 ho : تمثل معامل التقسيم أو التجزيء $\frac{1}{x^s} = \rho$ حيث تعبر قيمة (x) عن تقسيم الشكل في كل مرحلة.
N: عدد القطع الموجودة في الجسم التجزيئي.

يبين الشكل (2) تجزيء رقعة هوائي أبعادها (W, L) إلى أربع رقع متشابهة ومشابهة للرقعة الأساسية باستخدام الهندسة التجزيئية (تركيب كانتور) بدرجة تجزيء S=1 ومعامل نقسيم 1/3 $\frac{1}{x} = 1/3$

الشكل (2): تجزيء رقعة الهوائي باستخدام تركيب كانتور

 $ho = rac{1}{x^2} = 1/9$ يتم تجزيء كل رقعة من الرقع الأربعة بمعامل نقسيم (S=2) يتم تجزيء كل رقعة من الرقع الأربعة بمعامل نقسيم $ho = rac{1}{x^2} = 1/27$ وفي مرحلة التجزيء الثالثة (S=3) يتم تجزيء كل الرقع التجزيئية بمعامل نقسيم 1/27 $ho = rac{1}{x^3} = 1/27$ وهكذا يتم تجزيء رقعة الأساسية [8].

Metamaterials- Mms) التراكيب سالبة معامل الانكسار (Metamaterials- Mms)

تُعتبر ظاهرة الانكسار من الظواهر الناتجة عن تفاعل الحقل الكهرومغناطيسي مع المادة، ويتحدد هذا التفاعل الكهرومغناطيسي بمعاملات المادة (السماحية الكهربائية ٤ والنفاذية المغناطيسية μ)، أي أن تفاعل الحقل الكهرومغناطيسي مع المادة يتعلق بقيمة معامل الانكسار ويُعبر عنه بدلالة السماحية الكهربائية الفعالة والنفاذية المغناطيسية الفعالة بالمعادلة الرياضية:[5]

 $n = \pm \sqrt{\epsilon_{eff} \mu_{eff}}$ (3) تسمى هذه التراكيب بالتراكيب سالبة معامل الانكسار لأن ظاهرة الانكسار الناتجة عن تفاعل الحقل الكهرومغناطيسي مع بنيتها تختلف عن ظاهرة الانكسار في المواد الطبيعية حيث تنكسر الموجة الكهرومغناطيسية باتجاه معاكس للوضع الطبيعي، أي أن تفاعل الحقل الكهرومغناطيسي مع هذه التراكيب ينتج سماحية كهربائية سالبة ونفوذية مغناطيسية سالبة عند مجالات ترددية معينة، لذلك تسمى التراكيب سالبة السماحية الكهربائية والنفاذية المغناطيسية [9].

تُستخدم تراكيب الميتاماتيريال في تحسين كفاءة الهوائيات المطبوعة بالاستفادة من خصائصها الكهرومغناطيسية الناتجة عن تفاعل الحقل الكهرومغناطيسي مع بنيتها وفق البنود التالية [10,15]:

قوليد مجموعة كبيرة من الترددات انطلاقاً من الترددات الراديوية إلى
 الترددات الضوئية.

 تحسين اتجاهية الهوائي من خلال التحكم باتجاه الإشعاع وجمع الطاقة المتولدة في مجال زاوي صغير .

• زيادة مجال مسح إشعاع الهوائي المطبوع من خلال استخدام الأمواج
 الأمامية والخلفية المتولدة.

 تحسين طاقة إشعاع وربح الهوائي لدورها في إعادة انتشار الإشارات المتخامدة.

تُصنع هذه التراكيب من العناصر النحاسية وبأشكال مختلفة كالأسلاك والحلقات...

يبين الشكل (3) بعض أشكال تراكيب الميتاماتيريال المستخدمة في مجال الهوائيات المطبوعة [6].

الشكل (3): بعض أشكال تراكيب الميتاماتيريال المستخدمة في مجال الهوائيات المطبوعة

5- الهوائي التجزيئي المقترح

الشكل (b-4): بنية تركيب الميتاماتيريل المستخدم نلاحظ من الشكل (4) بأن الهوائي التجزيئي المقترح يضم ثلاثة أشكال تجزيئية وهي: 1- تجزيء رقعة الهوائي أبعادها (W,L): في مرحلة التجزيء الأولى (S=1) تم تجزيء رقعة الهوائي إلى أربعة أجزاء مصغرة بمقدار 1/3.

وفي مرحلة التجزيء الثانية (S=2) تم تجزيء كل رقعة جزئية إلى أربعة أجزاء مصغرة بمقدار 1/9. يبين الجدول (1) أبعاد الهوائي التجزيئي المقترح بواحدة mm حيث قمنا بتحديد أبعاد الهوائي وتصميمه باستخدام المحاكي HFSS:

أبعاد الشريحة بشكل إشارة (+)		خط النقل		الطبقة العازلة				رقعة الهوائي	
X1	Y1	W1	L1	εr	Sub h	Sub y	Sub x	W	L
14.1 mm	11.8 mm	4.85 mm	38.075 mm	2.2	1.57 mm	123.4 mm	83.6 mm	41.36m m	49.41 mm

الجدول (1): أبعاد الهوائى التجزيئى المقترح بواحدة mm

2- توزيع شريحة نحاسية بشكل إشارة (+) بين رقع الهوائي التجزيئية:

أبعاد الشريحة الرئيسية (X1, Y1) وأبعاد الشريحة الفرعية (X2=X1/3, Y2=Y1/3). 3- توزيع تركيب الميتاماتيريال بشكل تجزيئي ضمن طبقة أساس الهوائي بارتفاع h1 عن مستوي الأرضي، أي أنه يمكن اعتبار طبقة أساس الهوائي عبارة عن طبقتين عازلتين من نفس النوع متلاصقتين وتوضع تراكيب الميتاماتيريال بشكل تجزيئي بين هاتين الطبقتين العازلتين.

يبين الجدول (2) أبعاد تركيب الميتاماتيريال الموجود في مركز رقعة الهوائي، وتم توزيع هذا التركيب بشكل تجزيئي إلى أربعة تراكيب جزئية مصغرة بمقدار 1/3.

الجدول (2): أبعاد تركيب الميتاماتيريال المستخدم بواحدة mm

حلقة الخارجية	أبعاد ال	عرض المعدن	البعد بين الحلقتين	عرض الفتحة في الحلقة	ارتفاع الخلية عن مستوي الأرضي	أبعاد تركيب
a1	a2	b	d	g	h1	الميتاماتيريال المستخدم
14.1	11.8	0.88	1.2	0.9	0.62	

6- النتائج والمناقشة

قمنا بدراسة طاقة إشعاع الهوائي بدراسة قيمة معامل الانعكاس (Return Loss) وقيمة VSWR بدلالة ترددات العمل، حيث تم رسم الهوائي التجزيئي المقترح على الصفحة الميليمترية للمحاكي HFSS الذي يعتبر مخبراً افتراضياً يّمكن من تحديد ترددات العمل ويسمح بتحليل جميع بارامترات الهوائي.

1-6 دراسة قيم معامل الانعكاس S11 بدلالة تردد الهوائي التجزيئي المقترح:

يبين الشكل (5) قيم معامل الانعكاس بدلالة تردد عمل الهوائي قبل وبعد إضافة تراكيب الميتاماتيريإل:

نلاحظ بأن الهوائي المقترح يعمل عند التردد 4.88*GHz* بقيمة معامل الانعكاس S₁₁=-24 dB فبل إضافة تراكيب الميتاماتيريال، أما بعد إضافة تراكيب الميتاماتيريال يصبح التردد 4.91*GHz* بقيمة معامل الانعكاس 54-=511 dB أي أنه تم تحسين قيمة معامل الانعكاس بمقدار dB أي نقصان الطاقة المنعكسة عن الهوائي عند تردد العمل وبالنتيجة تحسين طاقة إشعاع الهوائي التجزيئي المقترح.

ونلاحظ من النتائج تغيير في قيمة التردد بسبب تغير الدارة المكافئة للهوائي بعد إضافة تركيب الميتاماتيريال، ويمكن الاستفادة من هذه الخاصية بإمكانية تغيير تردد العمل حسب التطبيق المطلوب وذلك إما بتغيير أبعاد الهوائي أو بتغيير أبعاد تركيب الميتاماتيريال المستخدم.

6-2 دراسة قيم VSWR بدلالة تردد الهوائي التجزيئي المقترح:

يبين الشكل (a-6) قيم VSWR بدلالة التردد قبل وبعد إضافة تراكيب الميتاماتيريال ضمن المجال الترددي GHz[6-6]:

الملك (b-6) قيمة VSWR عند ترددات العمل قبل وبعد إضافة تراكيب الميداماتيريال عند ترددات العمل قبل وبعد إضافة تراكيب الميتاماتيريال: ويبين الشكل (b-6) قيمة VSWR عند ترددات العمل قبل وبعد إضافة تراكيب الميتاماتيريال: $(f_0 = 4.88GHz, VSWR = 1.2)$ قبل إضافة تراكيب الميتاماتيريال. ($f_0 = 4.91 \ GHz, \ VSWR = 1$) بعد إضافة تراكيب الميتاماتيريال. تم تحسين قيمة VSWR بمقدار 0.2 بعد إضافة تراكيب الميتاماتيريال، وبالنتيجة تحسين طاقة إشعاع

الهوائي بسبب زيادة مطابقة الممانعة بين نظام التغذية والهوائي المقترح.

6–3 المخطط الاشعاعي للهوائي التجزيئي المقترح:

يبين الشكل (7) المخطط الاشعاعي للهوائي التجزيئي المقترح حيث نلاحظ أن الهوائي يشع في جميع الاتجاه الاتجاهات في نصف الفضاء الموجود فوق مستوي الأرضي، مع وجود نسبة قليلة من الإشعاع في الاتجاه الخلفي.

الشكل (7): المخطط الاشعاعي للهوائي التجزيئي المقترح

6-4 مقارنة بارامترات الهوائي التجزيئي المقترح قبل وبعد إضافة تراكيب الميتاماتيريال: يبين الجدول (3) مقارنة بارامترات الهوائي التجزيئي المقترح قبل وبعد إضافة تراكيب الميتاماتيريال:

VSWR	BW	\mathbf{S}_{11}	تردد العمل	بارامترات المهوائي
1.2	106 MHz	-24 dB	4.88 GHz	قبل إضافة تراكيب الميتاماتيريال
1	113.4MHz	-54 dB	4.91 GHz	بعد إضافة تراكيب الميتاماتيريإل

الجدول (3): مقارنة بارامترات الهوائي المقترح قبل وبعد إضافة تراكيب الميتاماتيريال

نلاحظ من الجدول (3) بأنه بعد إضافة تراكيب الميتاماتيريال بشكل تجزيئي ضمن طبقة أساس الهوائي تم تحسين قيمة معامل الانعكاس بمقدار B 30 وقيمة VSWR بمقدار 0.2، وبالنتيجة الحصول على هوائي مطبوع يحقق كفاءة عالية ومناسبة لتطبيقات الاتصالات اللاسلكية باستخدام الهندسة التجزيئية والتراكيب سالبة معامل الانكسار.

7-الاستنتاجات والتوصيات

تم في هذا البحث تصميم وتحليل بارامترات هوائي تجزيئي مطبوع بدرجة تجزيء (S=2) مناسب لتطبيقات الاتصالات اللاسلكية ويحقق كفاءة جيدة ومناسبة للتطور التقني لهذه التطبيقات، حيث تم الاستفادة من الهندسة التجزيئية والخصائص الكهرومغناطيسية لتراكيب الميتاماتيريال لتحسين كفاءة الهوائي المقترح، وذلك بتوزيع تراكيب الميتاماتيريال بشكل تجزيئي ضمن طبقة أساس الهوائي.

كانت قيمة معامل الانعكاس B 24 -=S₁₁ وقيمة VSWR قبل إضافة تراكيب الميتاماتيريال، أما بعد إضافة تراكيب الميتاماتيريال أصبحت قيمة معامل الانعكاس B 54-=S₁₁وقيمة VSWR أي أنه تم تحسين قيمة معامل الانعكاس بمقدار B 30 وقيمة VSWR بمقدار 0.2، وبالنتيجة تحسين طاقة إشعاع الهوائي بسبب نقصان قيمة خسارة العودة (الطاقة المنعكسة من الهوائي إلى المنبع) وتحسين مطابقة الممانعة بين نظام التغذية والهوائي المقترح.

نقترح في الأبحاث القادمة دراسة هوائي تجزيئي مطبوع رياضياً ومحاولة استنتاج موديل رياضي يعطي صلاحيات واسعة في التصميم، ومقارنة نتائج الموديل الرياضي مع نتائج برنامج المحاكاة HFSS.

8- المراجع

[1] BALANIS, A, C. 2005, Antenna Theory: Analysis and Design. John Wiley, New Jersry, London, 1074.

[2] KRZYSZTOFIK, W, J. 2013, Fractal geometry in electromagnetics applications from antenna to metamaterials. Microwave Review, 3-14.

[3] KATTIMANI, B; PATIL, R, R. 2021, Bandwidth enhancement of microstrip antenna using fractal geometry for S - band applications. SN Computer Science Journal, Vol.2, NO.282, 1-8.

[4] KAVITHA1, k.; GANAPATHY, R, P; IBRAHIM, S, M; AAKASH, V, I. 2020, Design of microstrip fractal antenna for vehicle-to-vehicle communication. Journal of Xidian University, Vol.14, NO.8, 1127-1137.

[5] GANGWAR, K; GANGWAR, R, S. 2014, Metamaterials: Characteristics, process and applications. Advance in Electronic and Electric Engineering, Vol.4, NO.1, 97-106.

[6] JOONKYO, J; PARK, H; PARK, J. 2020, Broadband metamaterials and metasurfaces: a review from the perspectives of materials and devices. De Gruyter International License, Vol.9, NO.10, 3165–3196.

[7] KANAUJIA, B, k; GUPTA, S, k; KISHOR, J; GANGWAR, D. 2021, *Printed Antennas: Theory and Design.* CRC Press, New York, 1-52.

[8] سعيدي، أمجد، سهيل ؛ صالح، السموءل ؛علي، صادق. 2021، تصميم وتحليل هوائي تجزيئي مطبوع عريض الحزمة من أجل التطبيقات الخاصة بالتجهيزات الطبية والانترنت. مجلة جامعة تشرين للبحوث والدراسات العلمية، المحلد 43 العدد 2، 235–250.

[9] SINGH, G; MARWAHA, A. 2015, A review of metamaterials and its applications. International Journal of Engineering Trends and Technology, Vol.19, NO.6, 305-310.

[10] ANNOU, A; BERHAB, S; CHEBBARA, F. 2020, Metamaterial-fractal-defected ground structure concepts combining for highly miniaturized triple-band antenna design. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol.19, NO.4, 522-541.

[11] RAMALAKSHMI, G; RAO, R, P. 2021, A novel metamaterial inspired iteration Koch fractal antenna for WiFi, WLAN, C band and X band wireless communications. Journal of Physics: Conference Series, 1-14.

[12] RAO, P, R; MADHAV, B, T; DEEPTHI, CH. 2019, Design and analysis of multiband metamaterial antenna for wireless and ITO applications. International Journal of Recent Technology and Engineering, Vol.8, NO.1, 334-340.

[13] DWIVEDI, S, K; MITHILESH, K; THARANI, L. 2020, A metamaterial loaded hybrid fractal hepta-band antenna for wireless applications with reconfigurability characteristics. Progress in Electromagnetics Research C, Vol.100, 187–203.

[14] REDDY, V, V. 2021, Metamaterial loaded circularly polarized fractal antenna for 2.4 GHz frequency applications. IETE Journal of Research, 1-10.

[15] KUMAR, CH, M; MUVVALA, K, N. 2019, A compact ultra-wide band rhombus shaped fractal antenna with metamaterial in the ground plane. International Journal of Engineering and Advanced Technology (IJEAT), Vol.8, NO.6, 1349-1354.