Re-fueling the actinides ²³⁹Pu,²⁴¹Am and ²⁴³Am as burnable absorbers in the MTR-22 MW research reactor

*Dr. Ismail Shaaban

(Received 24/7/2019 Accepted 3/10 /2019)

\Box ABSTRACT \Box

The main objective of this paper is the re-fueling of the MTR-22MW reactor by the U₃O₈-Al Original Fuel Elements (OFEs) mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides as burnable absorbers. This procedure helps to consume some of the stored ²³⁹Pu, and minimize the radiological impacts of the actinides ²⁴¹Am and ²⁴³Am on the environment. The neutronic parameters such as: Reactivity ρ_{ex} , Control Plates Worth (CPsW), Shutdown Margin (SM), Shutdown Margin with first control plate failure (SM-1), Reactivity Safety Factor(RSF), neutron spectrum in the Central Neutronic Trap (CNT), in the Central Irradiation Box (CIB), in the Be reflector and Power Distribution Factors (PDFs) of the MTR-22MW reactor were re-evaluated using the MCNP4C transport code. The variation of the reactivity ρ_{ex} was studied as a function of the operation time of the reactor as well. The obtained results showed that the MTR-22 MW reactor can been operated with U_3O_8 -Al OFEs mixed with ^{239}Pu , ²⁴¹Am and ²⁴³Am actinides within the safety conditions established in the design. Refueling of the MTR-22 MW reactor by U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides leads to reduce the enrichment with ²³⁵Ufrom 19.7% to 10.1% for every load, and to burn 1187.71 g 239 Pu, 220.04 g 241 Am and 96.89 g 243 Am per year. These results contribute to enhance the proliferation resistance of radioactive materials.

Key words: MTR-22 MW reactor, neutronic parameters, minor actinide, MCNP4C code.

^{*}Lecture – Department of physic – Sciences faculty – Tartous University.

إعادة تحميل الاكتننيدات Pu و²⁴³ و²⁴³Am و²⁴³ كماصات قابلة للاحتراق في مفاعل البحث MTR-22 MW

الدكتور: إسماعيل شعبان

(تاريخ الإيداع 7/24 /2019. قُبِل للنشر في 3 /10 /2019)

🗆 ملخّص 🗆

إنَّ الهدف الرئيس لهذه الورقة هو إعادة تحميل المفاعل MTR-22MW بالوقود الأساسي IA-8²³ و 2⁴¹Am و 2⁴¹Am و 2³⁰Pu نترونية قابلة للاحتراق (الانشطار). ويساعد هذا الإجراء في استهلاك قسم من البلوتونيوم 2³⁰Pu المخزن، وتخفيض التأثيرات السلبية البيولوجية الضارة للإكتيدات ²⁴¹Am و ²⁴¹Am الإجراء في استهلاك قسم من البلوتونيوم 2³⁰Pu المخزن، وتخفيض التأثيرات السلبية البيولوجية الضارة للإكتيدات ²⁴¹Am و ²⁴¹Am الإجراء في الوسط البيئي المحيط. وجرى حساب الأوساط النترونية للمفاعل – MTR 2 مثل: ²⁴¹Am و ²⁴¹Am و ²⁴¹Am و ²⁴¹Am و ²⁴¹Am و ²⁴¹Am و ²⁴¹Am ²⁴¹Am ²⁴¹Am و ²⁴¹Am ¹⁴¹Am ²⁴¹Am ¹⁴¹Am ²⁴¹Am ¹⁴¹Am ¹⁴¹Am ²⁴¹Am ¹⁴¹Am ²⁴¹Am ¹⁴¹Am ¹⁴¹Am ²⁴²Am ¹⁴¹Am ²⁴¹Am ²⁴¹Am ²⁴¹Am ²⁴²Am ¹⁴¹Am ²⁴²Am ¹⁴¹Am ²⁴²Am ¹⁴¹Am ²⁴²Am ¹⁴¹Am ²⁴²Am

الكلمات المفتاحية: المفاعلMTR-22 MW، الوسطاء النترونية، الاكتينيدات الثانوية والكود MCNP4C.

^{*} مدرس – قسم الفيزياء – كلية العلوم – جامعة طرطوس.

Introduction

During nuclear energy generation highly radiotoxic by products such as the Minor Actinides (MAs) is formed, which accumulate in spent fuel. Minor actinides transmutation can take two forms: either the MAs nuclei undergo fission or yields fission products that are shorter lived or capture a neutron and are transmuted into another heavy nuclide. The main MAs that is produced in nuclear reactors are Np, Am and Cm. The problem of the Np, Am and Cm transmutation with the Pu surpluses is a part of the problem of nuclear power ecological safety and proliferation resistance of the fissile materials.

In the last years, several studies were investigating the use of UO_2 and MOX fuel mixed with MAs in Light Water Reactors (LWRs) and fast reactors to both enhance the economy of the fuel cycle and to enhance the proliferation resistance of fissile materials, and to convert their nuclei to non-radioactive nuclei or to nuclei with shorter decay times [1], [2], [3], [4].

The mentioned Mas play an important role in the physics of the LWRs and fast reactors through their effect on the properties of the fuel cycle. Therefore, all experimental and researches carried out in this field focused on using these actinides in LWRs and fast reactors [1], [2], [3].

Some of the new actinide isotopes resulting from fuel burning in the reactor can undergo the fission process as well. This means that re-fueling the MA has its effect not only on the initial reactivity but also on the duration of the fuel cycle. Therefore, it is very important from my standpoint of view to study the effect of these actinides on the neutronic parameters and fuel cycle in Research Rectors (RRs) having medium power such as the MTR-22MW reactor [4], [5].

The main problem of this research

The radioactive properties and the toxicity of the MAs make them very harmful to human beings and the environment. Therefore, many studies to re-cycle the MAs in the fuel cycle of LWRs and fast reactors have been performed [1], [3], [4], [5], [6]. The results of these studies have showed the following: - The enrichment with ²³⁵U and the required amount of the fuel

- The enrichment with ²³⁵U and the required amount of the fuel decrease significantly with increasing the number of fuel assemblies charged with plutonium and MAs,

- Re-cycling of plutonium and MAs together with discharging uranium can reduce the radio-toxicity of discharged heavy metal (HM) waste to become less than that of the loaded uranium, and to reduce the spent fuel for storage and improve the proliferation resistance of the radioactive materials,

- re-cycling MAs and UO_2 fuel together can serve as burnable absorber to reduce the initial excess reactivity.

Since re-cycling RRs by MOX mixed with MAs seems not to be investigated, therefore, it is very important to investigate the re-cycle and effect of the MAs on the neutronic parameters of the RRs. This helps to improve the life of the fuel cycle and re-design the RRs using fuels with MAs and using closed fuel cycle in the future; this leads the burn the MAs resulting from these reactors and remove their risks.

The importance of this research

The major benefit of beginning minor actinide recycling in existing thermal reactors and in the RRs having medium power is that it would remove the

long-lived radiotoxic nuclides from the fission product waste, helps in saving energy and enhancing the proliferation resistance of radioactive materials and serving as a burnable absorber to improve the fuel cycle performance. In addition, the advantage of re-cycling MOX fuel with MAs in RRS is to help in:

- reducing the volume of the spent fuel for storage and enhancing the proliferation resistance, especially the length of the fuel cycle in these reactors is short in comparison with that of LWRs which means burning more plutonium and MAs,

- contributing to extend the spreading of RRs which use MOX fuel with minor actinides or original fuel with some fuel elements of MOX fuel mixed with minor actinides,

- increasing plutonium isotopes utilization,

- reducing the enrichment of the fuel with ²³⁵U loading in the reactor core,

- transmuting to less hazardous and possibly more useful forms.

- using a closed fuel cycle for RRs in the future.

The main objective of this paper was discussing the effect of the ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides on the neutronic parameters and the fuel cycle of the MTR-22 MW reactor (The Egyptian Second Research Reactor (ETRR-2) as example). This study was carried out changing only the fuel composition. This means, the dimensions of the fuel material, the Fuel Plate (FP), the Fuel Element (FE), the Reactor Core (RC) or any component of the reactor were not changed.

The MCNP4C code [7] and PECOM system [8] were used to provide comparison between the neutronic characteristics for the proposed core re-fueling by U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides and the initial U_3O_8 -Al OFEs core.

2. Methodology

2.1The ETRR-2 reactor

The general characteristics of the ETRR-2 such as: the fuel types, the fuel material, the absorber material and the active zone dimensions are detailed in Table 1 and Table 2 [9], [10], [11], [12].

Parameter	Weight percentage %						
	SFE FE Type 1 FE Type 2						
²³⁵ U	12.377	6.598	8.398				
²³⁸ U	50.450	26.894	34.230				
²⁷ Al	25.91	60.504	49.730				
¹⁶ O	11.263	6.004	7.642				
Density (g/cm^3)	4.802	3.299	3.655				

Table 1: Composition of the fuel in a typical ETRR-2 core.

Table 2: Specifications of the fuel material, fuel element, absorber material, active zone dimensions and water gap between plates of the ETRR-2 core for the U_3O_8 -Al OFEs and the U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides.

Fuel material		
U ₃ O ₈ -Al original	U_3O_8 -Al mixed with ²³⁹ Pu, ²⁴¹ Am	
fuel	and ²⁴³ Am actinides	
U_3O_8 -Al	$U_{3}O_{8}-A1 + {}^{239}Pu$, ${}^{241}Am$ and ${}^{243}Am$	
100	98.2 U ₃ O ₈ -Al + 1.3 ²³⁹ Pu + 0.5	
	$(^{241}Am + ^{243}Am)$	
19.70	10.10	
	U ₃ O ₈ -Al original fuel U ₃ O ₈ -Al 100 19.70	

Initial mass of ²³⁵ U loading in the reactor core (g)	6944.5		6332.	956
Saved mass of ²³⁵ U in the beginning of the load (g)			611.	543
Density of fuel (g/cm^3)	See Table	: 1	4.92	28
Fuel elen	nent			
Number of the fuel materials	29		2	9
Number of fuel plates in the fuel material	19		1	9
Dimensions of the fuel plate (cm) (length x width x thickness)	80 x 6.40 x	0.07	80 x 6.4	0 x 0.07
Absorber m	aterial			
	Ag – In -	Cd	B	ιC
Composition	Weight perc (%)	entage	Weight percent	centage (%)
	Ag	80	$^{10}\mathrm{B}$	5
	In	15	¹¹ B	75
	Cd	5	С	20
Density (g/cm ³)	10.18		2.:	52
Active zone dimensions				
Active length (cm)	80		8	0
Clad length (cm)	80		8	0
External section of fuel element (cm ²)	8×8		<u>8×8</u>	
Section in grid to house the fuel element (cm ²)	x 8.18.	1	x 8.18.1	
Plate thickness (cm)	0.15		0.15	
Meat thickness (cm)	0.07		0.07	
Meat width (cm)	6.40		6.20	
Side plate thickness (cm)	0.50		0.50	
Side plate width (cm)	8.00		8.00	
External distance between frames (cm)	8.00		8.00	
Internal distance between frames (cm)	7		7	
Cladding material	Al- 606	51	Al- 6	5061
Water gap betw	een plates	•		
of single fuel element (cm)	0.27		0	27
of different fuel element (cm)	0.39		0	39

Figure 1: A schematic horizontal cross section of the ETRR-2 core coming

from the MCNP4C code with six control plates.

Figure 2: A cross section of the fuel element used in the ETRR-2 by using the MCNP4C code

Figure 3: A cross section of the FP by using the MCNP4C code.

2.3 Required conditions for conversion from the U_3O_8 -Al OFEs to the U_3O_8 -AlOFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides as burnable absorbers.

In assessing the practicability of converting the existing ETRR-2 core to the use of U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides, three factors have to be taken into account:

1. The criticality safety parameters of the fuel should not be lower than those for the current design based on the U_3O_8 -Al OFEs,

2. Major modifications to the reactor should not be required, nor should the costs increase,

3. The essential capabilities of the reactor should be conserved requiring the neutron flux in the CNT and the CIB to be conserved,

Therefore, the modifications, which are brought to the ETRR-2 core are related only to fuel material and absorber material in the control plates, where the absorber material Ag-In-Cd alloy was changed into B_4C material for the ETRR-2 core re-fueled by U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides being more effective without changing neither the dimensions nor the sites [13], [14], [15].

The specifications of the fuel material, the fuel element, the absorber material, the active zone dimensions and the water gap between plates of the U_3O_8 -Al OFEs and the U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Amand ²⁴³Am actinides are listed Table 2. The weight percentage of the ²³⁹Pu ²⁴¹Am and ²⁴³Am actinides used is tabulated in the Table 3 and Table 4 too [16].

Parameter	Weight percentage %
²³⁸ Pu	0.001
²³⁹ Pu	95.01
²⁴⁰ Pu	4.51
²⁴¹ Pu	0.47
²⁴² Pu	0.01

 Table 3: Composition of the ²³⁹Pu plutonium.

Parameter	Weight percentage %
²⁴¹ Am	60.655
²⁴³ Am	39.345

 Table 4: Weight percentage of the ²⁴¹Am and ²⁴³Am isotopes.

3. Calculation of the power distribution and criticality parameters for the ETRR-2 core refueled by the U_3O_8 -Al OFEs and by the U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides.

The MCNP4C code was used to calculate the neutronic and criticality parameters of theETRR-2 core. The following data:

- nuclear data of the fissile and non-fissile materials were taken from ENDF/BVI libraries,

- 400×10^{6} neutron histories were used to run the code,

- 400 cycles with 50 passive cycles before the active cycles begin,

- initial value of the k_{eff} multiplication factor is 1,

- fuel elements in the ETRR-2 core were used as fission source points,

- fission source locating in the middle of each fuel element,

- $S(\alpha,\beta)$ was used to treat the thermal scattering in beryllium and hydrogen (*See MCNP4C code manual* [7]).

- energy range of neutrons was divided to three groups as: <0.625eV for thermal, (0.625eV to 5.53KeV) for epithermal and up to 20 MeV for fast.

were taken to run the input file of the ETRR-2 core by the MCNP4C code and calculate the neutronic and criticality parameters, and the power distributions as well as.

3.1 Criticality parameters

Criticality parameters include the calculation of factors such as:

- The effective multiplication factor, $k_{eff,,} and$ the corresponding excess core reactivity, $\rho_{ex},$

- The Shutdown Margin (SM) of the control system,

- The Shutdown Margin with the first control plate is failure (SM - 1),

- The Control Plates Worth (CPsW),

- The Reactivity Safety Factor (RSF). Whereas the calculated value of the RSF was obtained using this relation:

 $RSF = CPsW/\rho_{ex}$

Criticality calculations were performed by the KCODE criticality card (See the MCNP4C code manual [7]). The obtained results are listed in Table 5and Table 6.

Table 5: Criticality parameters of the ETRR-2 core re-fueling by the U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides as a burnable absorber actinides and design value for U_3O_8 -Al OFEs.

		8 8 9		
Parameter	Design value for U ₃ O ₈ -	U_3O_8 -Al mixed with ²³⁹ Pu,	Differences %	Design value of
	Al OFEs (pcm) with	241 Am and 243 Am (pcm)		safety criteria (pcm)
	Ag-In-Cd alloy as	with		
	absorber material in the	B ₄ C alloy as absorber		
	control plates	material in the control		
		plates		
ρ_{ex} at BOC ⁽¹⁾	8220	8234.99 ± 6.80	0.18	> 3000
CPsW ⁽²⁾	14120	14213.22 ± 18.95	0.66	> 1000
CPsW ⁽³⁾ #1	10390	10630.01 ± 17.70	2.26	>1000
CPsW #2	11030	10791.73 ± 18.87	2.20	>1000
CPsW #3	11050	11074.39 ± 18.25	0.22	>1000
CPsW #4	10810	10656.23 ± 18.84	1.44	>1000
CPsW #5	11330	10881.21 ± 19.04	4.12	>1000
CPsW #6	11290	11294.84 ± 19.34	0.04	>1000
(1)				

(1) ρ_{ex} at BOC- is the reactivity at Beginning of Cycle,

⁽²⁾ (CPsW) - is the Control Plates Worth,

⁽³⁾ CPsW#1 - is the Control Plates Worth without first control plate (See Figure 1)

	Table 6:	Calc	ulated	values	s of the	e RSF,	SM a	ind SN	1-1 of t	the E	TRR-2
core	re-fueling	by t	the U ₃	O ₈ -Al	OFEs	mixed	with	²³⁹ Pu,	²⁴¹ Am	and	²⁴³ Am
actin	ides and d	esign	value	for U ₂ (Os-Al (OFEs.					

Statement	Design value for U ₃ O ₈ -Al OFEs	U_3O_8 -Al OFEs mixed with ²³⁹ Pu, ²⁴¹ Am and
	(pcm) and	243 Am (pcm) and
	Ag-In-Cd alloy as absorber	B_4C material as absorber
	material in the control plates	material
		in the control plates
RSF >1	1.7177	1.7259 ± 0.0032
SM > 3000 pcm	5900	5978.23 ± 15.45
SM -1 > 1000 pcm	2170	2395.02 ± 6.16

3.2 The power distribution parameters

To calculate the power distribution parameters, the Average Thermal, Epithermal and Fast Neutron Fluxes (ATNF, AENF and AFNF)) in the CNT, in the CIB and in the Be beryllium reflector were to be calculated. The calculated values of the ATNF, AENF and AFNF in the CNT, in the CIB and in the Be beryllium reflector with reference values are given in Table 7 for the ETRR-2 core fueled by U_3O_8 -Al OFEs and re-fueled by U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides.

Table 7: Calculated values of the neutronic parameters of the ETRR-2 core re-fueling by the U₃O₈-Al OFEs mixed with 239 Pu, 241 Am and 243 Am actinides and reference values for U₃O₈-Al OFEs.

Parameter	Reference	Calculated values for	U_3O_8 -Al mixed with ²³⁹ Pu, ²⁴¹ Am and
	value	U ₃ O ₈ -Al original fuel	²⁴³ Am actinides
ATNF in the CIB $(n/cm^2.s) \times 10^{14}$	4.230 ^(a)	4.215 ± 0.017	4.276 ± 0.018
AETNF in the CIB $(n/cm^2.s) \times 10^{14}$		1.018 ± 0.031	1.037 ± 0.032
AFNF in the CIB $(n/cm^2.s) \times 10^{14}$		1.533 ± 0.014	1.563 ± 0.025
ATNF in the CNT $(n/cm^2.s) \times 10^{14}$	2.700 ^(b)	2.700 ± 0.007	2.723 ± 0.008
AETNF in the CNT $(n/cm^2.s) \times 10^{14}$		0.836 ± 0.008	0.865 ± 0.007
AFNF in the CNT $(n/cm^2.s) \times 10^{14}$		1.450 ± 0.007	1.491 ± 0.009

ATNF in the Be reflector $(n/cm^2.s) \times 10^{14}$	$1.000^{(b)}$	0.988 ± 0.014	1.003 ± 0.017
AETNF in the Be reflector $(n/cm^2.s) \times 10^{14}$		0.227 ± 0.024	0.232 ± 0.021
AFNF in the Be reflector $(n/cm^2.s) \times 10^{14}$		0.297 ± 0.019	0.311 ± 0.025
(a)			Ref

erence value was taken from reference (Hussein et al., 2011).

Ref

erences values were taken from the references (www.etrr2-aea.org.eg/Data Sheet about MTR-22MW.html and Main Core Data of MTR Reactor.html.

The values of the Power Distribution (PD) in the modified ETRR-2 core were calculated to know whether the re-fueled ETRR-2 core by the U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides causes a big change in the values of the peaking power factors compared with the ETRR-2 core fueled by U_3O_8 -Al OFEs, and to predict the temperature change resulting from fission in the FEs.

The power peaking factors are the:

- radial P_{rpf} and axial P_{apf} peaking factor of the Hottest Fuel Element (HFE) [17],

- P_{max} maximum and P_{min} minimum power releasing in the FEs,

- P_{avr} average power released in the ETRR-2 core.

The values of the factors P_{rpf} , P_{apf} and the P_{avr} are calculated as:

 P_{rpf} is the ratio between the P_{max} and the P_{avr} ,

- P_{apf} is the ratio between the maximum power released in the segment of the HFE and the average power released in the HFE [13], [14], [15],

- P_{avr} is the ratio between the calculated value of the power releasing in the reactor core and the number of the FEs.

The obtained results of the PD and the power peaking factors are given in Figure 4 and Table 8.

Table 8:	Power peaking factors of the ETRR-2 core fueled b	y
U ₃ O ₈ -Al OFES	and re-fueling by the U_3O_8 -Al OFEs mixed with ²³⁹ Pu	1,
²⁴¹ Am and ²⁴³ Ar	n actinides.	,

Parameter	U_3O_8 -Al original fuel	U_3O_8 -Al mixed with ²³⁹ Pu, ²⁴¹ Am and ²⁴³ Am actinides
Maximum power per element P _{max} (MW/element)	1.050 ± 0.004	1.040 ± 0.003
Minimum power per element P _{min} (MW/element)	0.584±0.004	0.576 ± 0.004
Average power per element P _{ave} (MW/element)	0.731±0.003	0.755±0.004
P _{max} /P _{min}	1.798±0.010	1.788±0.012
$P_{rpf} = P_{max}/P_{ave}$	1.432 ± 0.011	1.377±0.039
A_{apf} (MW)	$\frac{1.428 \pm 0.010}{1.355^{(a)}}$	1.424±0.015
Calculated and reliability value of the power (MW)	21.801±0.004 22 ^(b)	21.900±0.004 22 ^(b)

^(a) Reference value was taken from reference (Mohamed, M.F., 2011.Analysis of Reactivity Accidents in MTR for Various Protection System Parameters and Core Conditions, Thesis, Master of Science. Faculty of Engineering, Alexandria University, Egypt).

^{b)} Reliability value of the reactor power.

1	2	3	4	5	6
0.670	0.584	0.660	0.674	0.635	0.774
-0.680	-0.676	0.638	-0.653	-0.583	-0.822 -
7	8	9	10	11	12
0.616	0.761	0.694	0.755	0.821	-1.000
0.670	0.645	0.768	0.742	-0.852	-0.985
13 0.645 0.688 19	14 0.623 -0.597	- 0.751 - 0.730 -		17 0.715 -0.730-	18 0.723 0.750
0.622 -0.640 -	0.620 -0.792	0.709	0.778 -0.752-	0.859	- 1.050 - 1.040
25	26	27	28	29	30
0.651	0.584	0.682	0.714	0.959	0.829
0.693	0.586	0.679	0.727	0.877	0.733

Black color - is the number of the FEs in the ETRR-2 core.
 Site 16 - denotes the Central Neutronic Trap (CNT).
 Red and blue color - is the calculated values of the PD for the ETRR-2 core refueled by the U₃O₈-Al OFEs and refueling by the U₃O₈-Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides, respectively.

Figure 4: Calculated values of the PD for the ETRR-2 core refueled by the U₃O₈-Al OFEs and re-fueling by the U₃O₈-Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides.

In the calculation the PD in the reactor core and the power peaking factors, and the ATNF, AENF and AFNF in the CNT, in the CIB and in the Be beryllium reflector for the U_3O_8 -Al OFEs and the U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Amactinides, the F₄ tally, the FS, the SD and the FM cards in the MCNP4C code were used [13], [14], [15].

5. Study the reactivity as a function of the operation time of the ETRR-2.

The reactivity ρ_{ex} of the ETRR-2 core re-fueling by U₃O₈-Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides was studied as a function of the operation time of the reactor for the 10 MW power. This procedure is necessary to safe operational conditions accomplishment in the design of the ETRR-2 core as an initial U₃O₈-Al OFEs. In this case, to calculate the reactivity ρ_{ex} we used the PECOM system and taken the main actinides and major fission products [13]. The obtained results are plotted on Figure 5 for the U₃O₈-Al OFEs and U₃O₈-Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides.

Figure 5: Variation of the reactivity as a function of the operation time of the ETRR-2 core refueled by the U₃O₈-Al OFEs and re-fueling by the U₃O₈-Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides.

Results and discussion

From Table 5 it results that the maximum difference between the design values of the CPsW for the ETRR-2 core refueled by the U_3O_8 -Al OFEs and the ETRR-2 core re-fueled by U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides does not exceed 4.12%. This result indicates that the used U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides does not have any negative effect on the criticality safety of the reactor within the conditions given in Table 5.

In the criticality calculations:

- the reactivity ρ_{ex} was calculated from this equation [18]:

 $\rho_{\rm ex} = (k_{\rm eff} - 1)/k_{\rm eff}$

- the values of the SM and the SM-1were calculated with the control plates are fully inserted in the ETRR-2 core and the first control plate is failure (See Figure 1), respectively.

- the calculated values of the CPsW were calculated using the following equation:

 $CPsW = \rho_{ex} + SM.$

Table 6 shows the calculated value of the RSF, SM and SM-1. Noticeably, from this table the differences between the design values of the RSF, SM and SM-1 for the ETRR-2 core refueled by U_3O_8 -Al OFEs and the same parameters for the ETRR-2 core refueled by U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides are 0.48%, 1.30% and 9.39%, respectively. This result enhances that the

use of U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides in the ETRR-2 does not break the safety conditions established in the design of the ETRR-2 (See Table 5, Table 6 and Table 7).

From Table 7 it can be seen also that:

1. the difference between the calculated values of the ATNF, AETNF and AFNF in the CIB and in the CNT, and in the Be reflector are 1.423%, 1.832% and 1.919%, 0.845%, 3.352% and 2.749%, 1.495%, 2.155% and 4.501% respectively. This result emphasizes the fact that re-fueling the ETRR-2 reactor by a U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides will not significantly affect the thermal neutron flux in the CNT and in the CIB, and in the Be reflector. This result leads to say that:

- re-fueling the ETRR-2 by a U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides will not affect so much the neutronic parameters of the ETRR-2 core,

- the availability of the scientific applications that were available with U_3O_8 -Al OFEs will still be available now with the U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides,

- The ATNF in the CNT and in the CIB is higher than the 2.0 x 10¹⁴ n/cm²s. This value is sufficient to produce the radioisotopes such as: ⁹⁹Mo ¹⁴C, ³²S, ⁵¹Cr, ⁶⁰Co, ⁸⁹Sr, ¹⁵³Sm, ¹⁶⁹Yb, ¹⁷⁰Tm, ¹⁹²Ir [1], [19], [20]. It results from Table 8 that the maximum difference between the calculated values of the parameters P_{max}, P_{min}, P_{ave}, P_{rpf}, A_{apf}, P_{max}/P_{min} is about 3.84% for the ETRR-2 core refueled by the U₃O₈-Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides. This result leads to say that re-fueling of the ETRR-2 reactor by the U₃O₈-Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides does not create a big change in the power peaking parameters.

Figure 5 shows the reactivity of the ETRR-2 core as a function of the operation time for the U_3O_8 -Al OFEs and the U_3O_8 -Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides. Noticeably, there is a good agreement between these curves. Analysis of these curves shows that the,

curves shows that the, 1. ²³⁹Pu is compensating the reactivity loss that results from the absorption of neutrons by the ²⁴¹Am and ²⁴³Am actinides, 2. ²⁴²Am forms as a result of the absorption neutrons by the ²⁴¹Am (See

2. 242 Am forms as a result of the absorption neutrons by the 241 Am (See Figure 6) that has high cross section of fission (2100 ×10⁻²⁴ cm²),

Figure 6: Concentration of the ²⁴²Am for the ETRR-2 core re-fueling by the U₃O₈-Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides.

3. 242 Am increases the fuel burn-up beginning on day15 (See Figure 6) as a result of fissioning the 242 Am nuclei. This fact can be used:

- to improve the fuel cycle in RRs,

- to help the conversion from an open to a closed fuel cycle in the future,

- to lower the 235 U mass in the fuel or decrease the number of the FEs which are required for a reactor which comes out from enrichment reduction of uranium (See Table 9)

- to compensate the reactivity loss at the end of the fuel cycle.

Table 9: Saved and burning mass of the ²³⁵U and ²³⁹Pu, ²⁴¹Am and ²⁴³Am per year.

Туре	Mass of actinide per year (g)
Saved mass of ²³⁵ U	8561.616
Burning mass of ²³⁹ Pu	1187.714
Burning mass of ²⁴¹ Am	220.040
Burning mass of ²⁴³ Am	96.890

Table 9 shows the saved and burnt mass of the ²³⁵U, ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides per year. From this table it can be seen that the burnt mass of the ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides per year is small, but this result is very important because it is open this field to:

- increase researches and enhance the development of a distinguished fuel cycle in RRs by using the minor actinides,

- help in enhancing the proliferation resistance of the radioactive materials.

- prove the possibility of designing RRs with high or medium power with closed fuel cycles in the future,

- burn a bit of the 239 Pu in the MTR reactors,
- use of ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides as additional sources of energy,
- contribute in reducing the risks of these actinides in the environment.

Conclusion

The U₃O₈-Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides was proposed as a new fuel of the ETRR-2 reactor. Results indicate that the re-fueling of the ETRR-2 reactor by a U₃O₈-Al OFEs mixed with ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides will not have any negative effect on the criticality and neutronic characteristics of the ETRR-2 reactor. Using the ²³⁹Pu, ²⁴¹Am and ²⁴³Am actinides leads to reduce the ²³⁵U mass loaded in the ETRR-2 core. I hope these results will encourage the researchers in this field to development the fuel cycle in the RRs.

Reference

1. International Atomic Energy Agency, 2003. *Status and Advances in MOX Fuel Technology. Technical Reports Series* No.415, IAEA, Vienna, 190.

2. Bergelson, B. R.; Belonog, V. V.; Gerasimov, A. S.; Tikhomirov, G.V.; 2011. *VVER nuclear burn up with different absorbers, Atomic Energy*, 4, 240-245.

3. Chang, G. S.; Zhang, H. 2009. *Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design – BWR, Paris, France, September 6-11.*

4. Chang, G. S., 2007. Enhancing VVER Annular Proliferation Resistance Fuel with Minor Actinides, ¹³th International Conference on Emerging Nuclear Energy Systems 3–8 June, Istanbul, Turkey.

5. Zhang, Y., 2003. Fertile free fuels for plutonium and minor actinides burning in the LWRS, Master of Science at the Massachusetts Institute of Technology, 128.

6. AFPPT, 1996. Actinide and Fission Product Partitioning and Transmutation, In: Proceedings of the ⁴th OECD/NEA International Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, 11-13 September. Mito City. Japan, 424.

7. Briesmeister, J.F., 2000. LA-7396-M, A General Monte Carlo N-Particle transport code. U.S.A. Los Alamos, 826.

8. Shaaban, I.; Albarhoum, M., 2015. *Minimizing MTR reactor uranium load with the use of MOX fuel by employing ORIGEN-S and MCNP4C codes. Ann. Nucl. Energy*, 83, 34-40.

9. Imami, M.M.; Roushdy, H., 2002. *Thermal neutron flux distribution in ETRR-*2 reactor thermal column, Nuclear Technology & Radiation Protection, 1-2, 2002. 10. Nagy, M.E.; Elafify, M.M.; Ashraf, M.R.; Enany, A.M.R.; 2004. Parametric study of reactivity changes in Egypt Second Research Reactor (ETRR-2). Alexandria Engineering Journal, Vol. 43, No. 1, November, p.11-19.

11. Khater, H.; Elmaty, T.A.; Elmorshdy, E.E.; 2006. *Thermal-hydraulic modeling of reactivity accidents in MTR reactors, Nuclear Technology & Radiation Protection, 2. p. 12-24.*

12. Gaheen, M.A., 2010. Safety aspects of research reactor core modification for fission molybdenum-99 production, PERTR 2010 - 32 nd International Meeting on reduced Enrichment for Research and Test Reactors, October 10 – 14, SANA Lisbona Hotel, Lisbon, Portugal.

13. Shaaban, I. ; Albarhoum, M., 2017. The use of MOX caramel fuel mixed with ²⁴¹Am, ^{242m}Am and ²⁴³Am as burnable absorber actinides for the MTR research reactors. Appl. Radiat. Isot. 125, 188-195.

14. Shaaban, I.; Albarhoum, M., 2017. Burning of the Minor Actinides in fuel cycle of the MTR-reactors. Ann. Nucl. Energy, 100, 119-127.

15. Shaaban, I.; Albarhoum, M., 2016. Study of criticality safety and neutronic parameters of UO2 fuel in MTR research reactors using the MCNP4C code. Ann. Nucl. Energy, 98, 144-156.

16. Steel,T.A.; Shuck, A.B, Doherty, P.K., 1968. Radiation protection requirements for fabricating recycled plutonium reactor fuel. Proceedings of the first international congress of radiation protection, page 949-960.

17. International Atomic Energy Agency, 1980. Research reactor core conversion from the use of highly enriched uranium to the use of low enriched uranium fuels guidebook, Volume 1: Summary. TECDOC-233, IAEA, Vienna. 235.

18. Duderstadt, J.; Hamilton, L.J., 1976. Nuclear Reactor Physics, John Wiley and Sons Inc., Hoboken. 456.

19. Shaat, M.K., 2010. Utilization of ETRR-2 and collaboration, IAEA-TM-38728.

20. NEA, 2010. The Supply of Medical Radioisotopes: Review of Potential Molybdenum 99/Technetium-99m Production Technologies. 124.