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oABSTRACT o

In this paper, direct method is presented to solve some initial values problems in linear
and nonlinear ordinary differential equations from the first up to the third order.

The proposed method is applied directly to finding solutions to differential equations
without reducing the second and third order to systems of first order equations as
other methods. Therefore, consistency and absolute stability are studied, and then
global truncations errors are found for the method applied to the mentioned
problems. To demonstrate the validity of the theoretical results, we tested the
proposed method by solving five problems in differential equations of the first,
second and third order, where comparisons of our results with the results of others
indicate the efficiency of the proposed method in terms of accuracy and
effectiveness.
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1. Introduction

Ordinary differential equations (ODES) and their solutions play a major role in mechanics,
physics, chemistry, economics and astronomy etc. Sometimes, it is very difficult to
find an analytical solution to a given ODEs. For this reasons it is important to search
for alternative techniques to find such solutions.

This paper describes a direct method for solving the general initial value problems (IVPs)
in ordinary differential equations, viz.

yO ) = (XY, Y,...y"?), xe[a,b] ,n=1,2,3, (1)

y® (@) =y, k=0,1,...,n-1, 2

The problem (1)-(2) for n=2, occurs frequently in Celestial Mechanics and, for example in
mechanical problems, without dissipation. Theoretical solutions of such problems are
normally highly oscillatory.

Recently, many methods have been introduced to solve the problem (1)-(2) for
n=1,2,3, such that:

Mahmoud and Osman [8] studied a class of spline-collocation methods for solving
second-order IVPs; their method was stable and convergent from the fifth order.
Eskandari and Dahaghin [6] produced a special general linear multi-step method for
special second-order differential equations, in addition to checking stability. Yap et
al [14] proposed the block hybrid collocation method with two off-step points for -
order IVPs. Their method is derived via interpolation and collocation of the basic
polynomial. The stability properties of the block method are investigated. Agboola et
al. [2] study a simple and Taylor series-based method known as differential
transformation method to solve third-order IVPs. Ramos et al [12] found the
construction of a family of explicit schemes for the numerical solution of 1VPs of
ordinary differential equations .The one-parameter family is constructed by
considering a suitable rational approximation to the theoretical solution, their method
is A-stable and second-order convergence.

Duromola and Momoh [5] developed a hybrid method with block extension to solve third-
order IVPs. The derived method was tested for consistency, zero stability,
convergence and absolute stability. Abdelrahim [1] was thought numerical hybrid
block method together with shooting technique to be an appropriate method for
solving third-order BVPs. Ahmoud et al. [9] presented a numerical spline algorithm
for the Falkner—Skan problem over a semi-infinite interval. Their algorithm is based
on change of variable from interval [0, [ to [0,1], then the FSE is transformed into
first initial value problem (IVP) and second IVP for improving convergence. Sahu
and Jena [13] introduced a novel operational matrix method for solving, This method
is based on the frame of linear cardinal B-spline. Fairuz and. Majid [7] presented a
class of rational methods of second to fourth order of accuracy. The absolute stability
and comparisons with others are considered. Oje and Majuk in [10] considered
rational Runge-Kutta schemes to solve second-order IVPs, then stability and
convergence are studied.
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2. Importance of Research and its Objectives

It is well known that most phenomena in nature and realistic applications can be simulated
by models of ordinary differential equations, but unfortunately the greatest part of
these equations cannot be solved by classical methods, for this reason we aim to
present effective and stable method to obtain approximate solutions for such IVPs in
ordinary differential equations(1)-(2).

3. Methodology

Ordinary differential equations are closely related to several sciences, including numerical
analysis, linear algebra, mathematical analysis, and computer science. Therefore, the
proposed method depends on creating approximating solution to the problem by
polynomial of a certain degree, then studying stability, consistency, and determining
the formula for global truncated error.

4. Results and discussion

Firstly, we begin to provide the following definition.

Definition 1. A one-step difference-equation method with local truncation error 7; (h) at
the ith step is said to be consistent with the differential equation and boundary
conditions if

limp,_yo max | 7:|=0.

4.1 Description of the SC Methods

Let us consider the initial value problem (1)-(2) and assume that f e C°([a,b]x®R"),
and that it satisfies the Lipschitiz condition:

| EOG Y0 Yo Vo) = OOV Yo V) IS LD LY, —y; |4 in [a,b]x R",

i=1
The approximate solution P(x) is constructed as follows:
Subdivide [a,b] into sub intervals of equal length h=(b-a)/N , with grid pointsx, =a+ih,

i=0,1,...,N-1, and let the component of P(x) on I, =[X;,X;,,] are given as [8]:
P(x)=t3(6t* +3t+1)y, +t%(3t*+t)hy +(%t2)f3h2yi”

©)
+t°(6t > +3t +1)y,,, —t*(3t > +Dhy!,, +t3(%t—2)h2yi”+l

where t =(x—x;)/he[0,1],t =1-t.
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We need the derivatives of P(x) with respect to x up to third-order
P'(x)=-30tt’y, /h+t?(1+2t-15t %)y, +t*(t —§t2)hy.” +

30t2 %y, /Th+t?(1+2t -158%)y], —t* (T -3t%)hy,

P"(x) =[t(120t* —60t) y, +t(60t > —36t)hy; +f(10t> -8t +1)h’y’ +
t(120t > - 60t )y, ., + (36t —60t *)hy! , +t(10tf > -8t +1)h’*y’ ]/ h?
P"(x) =[(360tt —60) y, + (192t —180t > — 36)hy’ + (36t —30t> —9)h’y’ + )

(60360t t)y,,, + (192t —180t > - 36)hy/,, + (30t — 361 +9)h’y’,]/h®

The polynomial P(x) and their derivatives up to third-order with three collocation points
are applied to (1)-(2) as followed:

P(n)(xi+Cl) = f[xi+C1 J P(Xi-*—Cl )! P'(XH—C1 )""' P(n_l)(XH—Cl )] J
P(n)(xi+C2) = f[xi+C2 ' P(Xi+C2 )' F)'(Xi—hC2 )""’ F)(nil)(XHC2 )]’

()

(7)
P®(xi1) = FIXi P(X02), P/ (Xi0)s o POV (60)1 n=12,3;
i=01..,N-1
in each subinterval I;, where collocation points are given as
Xive, =% +¢;h, Xirc, = X +C,h, X, =X%; +h, (8)

with the collocation parameters :
c,=4/5,¢,=11/12 9)
4.2 Convergence of the proposed method for the first order (n=1)
Putting n=1 in relations (7)-(9) , we get
P!(XHC- ) = f (Xi+Cj ' P(Xi+C- )) ' J :1!21 (10)
P’ (X|+l) |+l = f(XHl’ P(X|+1)) I = 01 N -1 (11)
and taking into account substitution in the valuesP,’ =f,, P, =f,,, and using the
collocation parameters (9) we can write (10)-(11) as follows:

96 8 7 64
125 125 P 125 125 H s 10 125Hfl+c1
605 2299 ||, 25 605 21 469 2057 || fi+es
3456 4147 hPi+1 ﬁmz“ oz 01 ~nallf,,
By solving this system we have
8279 2375 1728 11 fi
i+1 176 23232 1344 h 847 E fi+c
= £ ' (12)
n2p,l | o R2p", o s e |fi
1936 112 847 fis1

Notice that the matrlx of the system (12) nonsingular because
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=_1
1 - 44?&0,
0 I

44
and that the its eigenvalues lie inside to the unit disc.
We obtain from the system (12) that local truncation error:

8279 2375 1728 119[ ¥ (%)
Yir1 176 23232 1344 847 12
} l \ [ ‘ l V)| o
2.1 2.1 20736 | ( l+Cz |
h7y i h“y™ Tore ~% Uy
Using Taylor’s expansions of y, y', y" and substltutlng in (13), one can estimate the local
truncation error as follows:
31

7, = h¢ | 32000 O () + 0 (7)1 = 1,2, .., N

7200
Note that local discretization error 7; of our method is from order six. For that using the

max norm, we get global truncation error:

1]l = = h%; c:= max |[f© (x|, for x; [a.b]

Hence, our method applied to first order I\VVPs is consistent of order five.

4.3 Convergence of the proposed method for the second order (n=2)
Putting n=2 in relations (7)-(9) , we get
P"(Xc,) = F (e, P (e, ), P'(xHC. ) L i=12 (14
|+1 = f(X|+17 P(X|+1) P (X|+1)) i = 'N -1 (15)
Substituting in the values P" = fi, P” = f,,, and using the collocation parameters (9)

i+1

the system (13)-(14) are obtained as follows:

T 144 144 P, _é 1 0 is fl
+ hz 2 ﬁ+C1
275 341 hP’z+1 _ 275 209 hP'i 149 0 1 _ 319 fl+Cz
| 144 T 144

864 geal L fi 1
By solvmg this system we have

_ > 75 28 7f f,

Pi+1 1 1] |: Pi 528 336 77 4 {ﬁ+cl-|
, B ’ 59 625 432 8 fl"'cz

AP 114 1 LhP 261 168 77 3llfi,
(16)
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Notice that the matrix of the system (16) nonsingular because

1 1
=1+0.

0 1
and that the its eigenvalues lie onside to the unit disc.

We obtain from the system (12) that the local truncation error:

. | o7 75 _2ss () ]
YVi+1 11 Yi 528 336 77 4 y”(xi+c )
T = - - y'(x 1 40
. ' 2 £5 _ ﬁ g i+C2
hy'it1 0 1llhy" 264 168 77 3Ly (x;41)

Using Taylor’s expansions of y, y', y" and substituting in (17), one can estimate the local

truncation error as follows:
37

7= h8 | #3200 FO () + 0(n7),i = 1,2, N

5760
Note that local discretization error T; of this method is from order six, for this using max

norm we get global truncation error:

17| = —=ch%; c:= max |f© (x;)|, for x; e[ab]
Hence, our method applied to second order IVVPs is consistent of order five.
4.4. Convergence of the proposed method for the third order (n=3)
Putting n=3 in relations (7)-(9), we get
Pm(XHC- ) = f(xi+Cj ' P(Xi+C- )! P'(XHC- )! P”(Xi+C- )) ' J = 1’21 (18)

P” =h®f(x,,,P(X,,), P'(X.,),P"(X,,)), i=01..N-1 (19)

i+1 i+17

by usmg the collocatlon parameters (9) we can write (18)-(19) as follows:

152 _15_2 _S P, 1 0 0][fi+e,
hP'; 4 65 45 29[l AP, |+ h3[0 1 O|]|fi+c, | (20)
4 24 2 it 2 4 24 2 pl!
-36 P71l Llgg 24 3 1LA°P7] 0 0 1lfins

By solvmg thls system we have

215 54 979
% P; S6 7 Z—| fl+C1
, 200 132 59
hP'; 44 1|| AP +h3|; - ?l fite, (21)
th”l+1 1 hZP”i [22—5 —24 %SJ _fi+1

Yo



o5 Se AN ) Jiliss pians Ja 58 2ipyla

Notice that the matrix of the system (20) nonsingular because
12 24

3
5 5
65 _85 19|==40
2 4 24
60 —-36 9

and that the all eigenvalues of the matrix:

lie onside to the unit disc.
We obtain from the system (21) that the Iocal truncation error:

54 n
Yi+1 - _] (Xire,)
_ 200 132 9 "
T; = hy i+1 0 1 1 _h3| - l (x l+C2) (22)
—24 22_5J Y (xi11)
Using Taylor’s expansions of Y, Y, y" and substltuting in (22), one can estimate the local
discretization error as follows:
r 137 1
14400

97
T =htl — 1 f®O)+0MH),i=12,.. N
T 432Of (x;) +0(h7),i

59
_ o L2160 1 ) ) ) )
Note that local discretization error 7; of this method is from order six, for this using max
norm we get global truncation error:

T = mc h%; ¢:=max |f©® (x;)|, for x; e[a,b]
Hence, our method applied to third order I\VVPs is consistent of order five.
4.5 Absolute Stability of Proposed Method for the first order
To study absolute stability of our method applied to first order I\VVPs , we will examined

as usually by applying them to the Dahlquist’s test problem[12]:

y i+1

y'=Ay, 1eC (23)

Then by using approximations (3) and (4) and collocation parameters ¢;=4/5, ¢,=11/12,
we have:

P’ (x,+C )= xP(x,+C ), j=12, i=01,.,N-1,

Moreover

Pli=V P P =VP (24)

A\l
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putting V = (hA)?and using approximations (3) and(5), and the values (24) , we get
following formulation matrix:

C(\/)'EHl = D(\/)Ei '

where
96 4544V  512V2 8 32V
125 3125 ' 3125 T 125 3125
c\vV) = \
605 78287V 66552 2299 1331V
345966_ 4%4276?/ 6%%;9244 :414728]/_ 497664
25 T 315 Tas 15 T Piis Py
D(V) = . Pitq Py =
605 | 3025V 55V 41 121V P hP",

345_6_ . 41472 27648 41472 _497664 o .
Thus, by definition, V belongs to the region of absolute stability of the proposed method if

the eigenvalues y, =, (V), k=12 of the generalized eigenvalue problem
pC(V).X =D(V).X, X=#0,
lie inside to the unit disc in the complex plane, i.e. if

[TTARS (25)
We consider the asymptotic behavior as V — oo, multiplying the characterizing equation
by V=, we get
68 512u 8 32u
T3125 '3125 3125 3125

. -3 _ —
m V=3 det(uC(V) -DW)) = | "2 Geve 11 13314

T 27648 182044 197664 497664
77 790791 9317u? (26)

H(H) - 388800000 388800000 24300000’
it is characterizing equation, two roots p, = —0.5295,u, = —0.00098. This fulfills the

condition of the roots (25) and whomever we conclude is that our method applied to
first order IVVPs is absolutely stable.

4.6 Absolute Stability of second the QSC Methods
In the same manner for studying absolute stability, we apply our method to the test
equation:

y'=Ay, 1eC (27)
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Then by using approximations (3) and (5) and collocation parameters ¢;=4/5, c,=11/12,

we have:
P"(xi+cj )= XZP(XHCJ_ ), j=12, i=01,..,N-1,
Moreover
P" =VP,, P" =VP, (28)

i+1

putting V = (hA)?and using approximations (3) and(5), and the values (28) , we get
following formulation matrix:

C(V)'Bi+l = D(V)Ei 1

where
144 = 3444V  32V2 96 512V T
25 3125 3125 25 3125
cvV) = ,
275 = 25949V  1331V2 341 6655V
L 72 41472 497664 144 82944
r 144 444V  8V2 48 68V T p P
——— t oo to = —— T i+1 i
25 3125 3125 25 3125
D(V) = Piiq Py =
275 . 6941V = 121V2 209 55V ’ /
72 41472 497664 144 27648

And so on, V belongs to the region of absolute stability of the proposed method if the
eigenvalues y, =, (V), k=12 of the generalized eigenvalue problem

1C(Z).X=D(2).X, X=0,

lie inside to the unit disc in the complex plane, i.e. if

[NITAES® (29)
we consider the asymptotic behavior as V — oo, multiplying the characterizing equation
by V=, we get
8 321 68  512u
3125 3125 3125 3125

: -3 _ —
limv=det(CV) -DW) = | 5 331, 58 eeseu

497664 497664 27648 82944

77 790791 9317u?

H(“) - 388800000 388800000 2f}300000’_ . . . .
It is the same characterizing equation, which we obtained in the previous relation

(26) , where two their roots p, = —0.5295, 1, = —0.00098. Then the condition of roots
is fulfilled and hence our method applied to secod order IVPs is absolutely stable.

4.7 Absolute Stability of Third the QSC Methods
In the same manner for studying absolute stability, we apply our method to the test

equation:
y"'=2xy, 1eC (30)

YA
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Then by using approximations (3) and (5) and collocation parameters ¢;=4/5, c,=11/12,

c3=1 we have:
P (Xiye,) = 7€'F>(x,+c ), j=123 i=01,.,N-1,
putting V = (hA)®and using approximations (3) and(6) , we get following formulation
matrix:
C(\/)'EHl = D(\/)Ei '
where
-E 2944V 24 512V 3 _ﬂ .
5 3125 5 3125 3125
C(V) — 6_5 _ 41261V _§ 70543V g _ 1331V
2 41472 4 414720 24 497664 ’
: - -36
12 _18lv. 12 68V 3 _ 8V 4 T Py r P, 7
5 3125 5 3125 5 3125
D(V) =8 _z2uv 45 ssv 29 12V 4 p. VhP';, | Py =[hP';
2 41472 4 27648 24 497664 P T
60 24 hP”H.l hPlI

And so on, V belongs to the region of absolute stability of the proposed method if the
eigenvalues u, =, (V), k =12,3 of the generalized eigenvalue problem

1C(Z).X=D(2).X, X=0,

lie inside to the unit disc in the complex plane, i.e. if

(R THATHES (31)
we consider the asymptotic behavior as V — oo, multiplying the characterizing equation
by V2, we get
lim V-3 det(pnC(V) —D(V))
181 2944y 68 512y 8  32u
3125 3125 3125+3125 3125 3125
_| 211 41261u 55 70543 u 121 1331u
41472 41472 27648 + 414720 497664 497664
¥ .0 ’
I = - 388;;/;000 1212233500 N 11251235302:)9(;:)0’

It is the characterizing equation, where three their roots p, = 0.33203,
u, = 0.000457,p, = 0.
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Then the condition of roots is fulfilled and hence our method is absolutely stable when is
applied to differential equations of the third order.

5. Numerical Results

In this section, we solve several linear and non-linear problems to test the proposed
method. All comparisons of the results, our method, with the results of the other
methods were computed with the same conditions and criteria. The numerical

experiments were performed in double precision using Mathematica.

Problem 1 [3]: Firstly, we consider the first linear problem:

1 1
y'(x) = 5(1 -y), y(0)= >

Theoretical solution is given

y(x)=1-
We solve the problem by the proposed method, we compare our results with the results of
hybrid block method in [3] and put the results in Table 1. In Figure 1, we draw the

e—x/z

2

solution by our method with the exact solution.

Table 1: Comparison of absolute errors in the solutions of probleml.

X Hybrid Block Method [3] Our Method.
Abs. Error The solution y The solution y Abs. Error
0.1 1.218026E-13 0.524385287750861 0.5243852877496415 1.44328991 E-15
0.2 1.399991E-13 0.547581290981880 0.5475812909820175 2.77555755 E -15
0.3 1.184941E-12 0.569646011786286 0.569646011787467 4.10782519 E -15
0.4 1.538991E-12 0.590634623462548 0.5906346234610039 5.16253706 E -15
0.5 1.110001E-12 0.610599608463187 0.6105996084642914 6.16173773 E -15
0.6 5.270229E-12 0.629590889658614 0.629590889659134 7.04991620 E -15
0.7 2.10898E-12 0.647655955142752 0.6476559551406353 7.93809462 E -15
0.8 1.297895E-11 0.664839976969201 0.6648399769821717 8.65973959 E -15
0.9 3.08229E-11 0.681185924158290 0.681185924189104 9.38138455 E -15
1.0 4.121925E-11 0.696734670139561 0.6967346701436734 9.88098491 E -15
20 | - | e 0.8160602794142667 1.21014135 E-14
S e 0.888434919925774 1.11438636 E-14
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Figure 1: Both the solution by our method with the exact solution.

Problem 2 [12]: We consider an autonomous on linear problem for which there is a
singular feature due to the presence of a pole on the derivatives of the solution:

1 1 -3
y(x)—yz(x), y(=1) = 3
Theoretical solution is given
(10 + 9x)*/3
y(x) = — 313

We solve the problem by the proposed method, we compare our results with the results of
Ramos et al. method in [12] and put the results in Table 2.

Table 2: Results of Problem 2 solved with the proposed method and other method.

N Ramos et al. [12, 2015] Our Method
Max. Error y Max. Error y

182 8.82844 E-06 6.80504 E-10
289 2.02776 E-06 1.64148 E-11
462 4.36543 E-07 3.03781 E-11
635 7.71190 E-08 5.04281 E-11
975 1.92111 E-08 7.96219 E-11
1437 4.22068 E-09 1.23991 E-12
2119 1.03579 E-09 2.95244 E-12
3113 3.77049 E-10 9.22623 E-13
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Problem 3 [4]: We examine now the linear second-order differential equation:
Y@ -y =x-1 y0=2  y'(0)=-2
Theoretical solution is given
yx)=1—-x+e*

We solve the problem3 using by our proposed method, and the absolute errors are
compared with those produced by Bilesanmi et al. [4, 2019] as shown in Table 3.
The comparison shows that our approach gave better result compared with other
method.

Table 3: Results of Problem 3 solved with the proposed method and other method.

y Bilesanmi et al. [4, 2019] Our Method

Abs. Error y Abs. Error y
0.1 2.591705 E-12 1.587618925213973 E-14
0.2 5.964562E—-12 4.762856775641921 E-14
0.3 9.366508E—12 9.22595333463505 E-14
0.4 1.286815E—-11 1.495470414170085 E—-13
0.5 1.649259E—-11 2.164934898019055 E-13
0.6 2.029099E—-11 2.948752353404416 E-13
0.7 2.428346E—-11 3.857469899060106 E-13
0.8 2.852540E—-11 4.879985304739875 E-13
0.9 3.304634E-11 6.014078124394473 E-13
1.0 3.792694E—-11 7.253087019876148 E—13
20 | e 2.626565631658195 E—12
0 | e 6.516238937326335 E—12

Problem 4: We consider the nonlinear second order problem [11]
y'(X) = y*(X) + %cos X —sin (g),

y(0) =y'(0)=0.

The theoretical solution is.

y(x) = sinz(g) .

The maximum absolute errors in y(x) and y'(x) , the right side is our results and the left
side is a computational algorithm [11] are given in Table 4. We draw both the
solution by our method with the exact solution in Figure 2. Our numerical results and
other results are summarized in Table 4.
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Table 4: Results of Problem 4 solved with the proposed method and other method.

. A computational algorithm [11, 2018] Our Method
Max. Error y' Max. Error y Max. Error y Max. Error y'
128 3.083482 E-02 2.283364 E-03 4.120907 E-09 2.567807 E-08
256 2.080867 E-02 1.416236 E-03 8.534215 E-10 5.076537 E-09
512 1.396590 E-03 8.000433 E-04 1.243802 E-11 3.983322 E-10
1024 9.322166E-03 4.311204 E-04 9.675840 E-12 8.193601 E-11
2048 6.191766 E-03 2.279877 E-04 2.453619 E-12 1.907956 E-11

Pand¥Y
L0}

0.8+

12

2 4 & B 10
Figure 2: Both the solution and the exact solution by our method.

Problem 5: we examine a general the third-order linear problem [5]
y'"(x) +2y"(x) — 9y’ (x) — 18y(x) = —18x — 18x2 + 22,
y(0) =—-2,y'(0) = -8,y"(0) = —-12.
The theoretical solution is
y(x) = —2e3* +e 2 +x%2—1.
The maximum absolute errors in y(x) are computed, where the right side is our results and
the left side is a hybrid numerical method [5] are given in Table 5.
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Hybrid Numerical Method [5, 2019] Our Method

" y Max error y Max error
1/10 _40'035738492925235739031 6.421349E(—8)| -40.0357385675764326765432 | 4.437708E-9
/20 | ~H0-033738362137319970130 9'9940281“3;_10 -40.0357385627164655879321 | 4.222542E-10
1/40 _40'035738563123122652492 1'5600;415(_“ 140.03573856312512564321532| 1.35921E-11
1/80 _40'035738563138479180447 2'4360§5E(_13 140.03573856313854329087654| 1.77636E-13
1/160 _40'03573856;138719182996 3'6069§6E(_15 140.03573856313872432098 | 1.5310E-15

6. Conclusions and Recommendations
We have presented the method that is efficient, stable and convergent for solving first,
second and third order initial value problems in ordinary differential equations. This
proposed method is tested by solving five problems, the results were effective and
accurate, and comparisons of our proposed method with five other methods indicate
the preference of our results.

We recommend that this method should be used to solve ordinary differential equations
from first, second and third order. Furthermore, we suggest developing new methods
for solving problems in ordinary differential equations of high order.
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