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o ABSTRACT

In this study, thin plates are analyzed using modified finite element displacement
approach in the geometrical nonlinear case (large deflections , small rotations). The
displacement approach is based on the incremental form of the principle of virtual
displacement. Wherein the displacement function of the rectangular plate element (ACM)
which has 12 degrees of freedom, is modified by adding new terms. The new terms
represents the effect of the external load. As a result, shape functions are classified into
two categories the first one is the homogenous shape functions relevant to degrees of
freedom and the second is the nonhomogeneous shape functions related to the element
loading. Stiffness matrices, external force vector and new terms from applying the
modified finite element is concluded.

Some examples are computed and plotted and the results of the displacements,
stresses, strains and internal forces are compared with those produced by MSC Patran
program as well as the analytical solution. The comparison showed that the modified
method presented an improved solution.
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Background

Thin plates are relatively sensitive and deformable members. They highly change
their geometric shape under the influence of external lateral loads because of the small
thickness, so it is well recommended to analyze thin plates taking into account geometric
nonlinear effects and avoid as far as possible linear analysis. In addition to the above,
nonlinear analysis reduces the weight of thin plates and ensures optimal structural design
[1]. One of the most common methods to carry out geometric nonlinear analysis is the
finite element method.

According to Addisu [2], the strong development of the method from engineer's
point of view has been led by Zienkiwicz and Taylor [3]. The mathematical theory of the
finite elements has been developed and promoted by many scientists. Among them one can
mention Strang and Fix [4], Babuska and Aziz [5], Oden and Reddy [6].

Argyris, Clough and Martin were among the first pioneers who worked in FEM and
they have played a major role in developing this method and achieving its wide popularity
[7]. In 1965, Argyris [8] derived geometric stiffness matrix in natural coordinate system
but he didn't provide any examples or engineering applications. Martin [9] used the
principle of virtual displacement taking into consideration the nonlinear terms in
deformation-displacement relations and derived the initial stress matrix for triangular finite
element then he used this matrix with linear stiffness matrix through an incremental
iterative procedure to solve large deflection problems in thin plates. Murray and Wilson
[10] used triangular plate element also through incremental iterative procedure and their
study was applicable to shells with large deflections as well, results obtained were close to
analytical solutions of thin plates. Melliere [11] developed an eighteen degrees-of-freedom
triangular element to derive geometric stiffness matrix, then conjunct it with the standard
small displacement ‘elastic' stiffness matrix in linear-incremental approach to obtain
numerical solutions for the large displacement problem of thin elastic plates and shells.

Recently, Radek Gabbasov et al [12] investigated the large deflection analysis of thin
plates by proposing a numerical method basing on the use of difference equations of
successive approximation method (MSA).

In the present work, large deflection analysis of thin plates is investigated by
applying a modified version of the well-known ACM rectangular plate element, see for
example [13, 14, 15, 16], using a modified FEM — displacement approach. This approach
was presented in many international events. The oldest events were the first international
workshop on Trefftz method-recent development and perspectives hold in Cracow, Poland
(1996) and the second international workshop on Trefftz Method high Performance,
Global, Sub-Domain and Finite Element Formulations hold in Sintra, Portugal (1999). The
modified finite element displacement approach was described in details, among other
approaches, in report [17], in many conference papers [18,19,20,21,22,23], and in journal
publications [24].

We aren't going to introduce a long historical background about thin plates in
nonlinear domain but for readers who looking for more recent references you can see
[7,12,27,28,29] which represents a sample of important papers that contributed
significantly in the development of nonlinear analysis of thin plates in last ten years.

The finite element displacement approach presented here, use displacement approximation
basis separated into homogeneous part and particular part. The parametric form chosen fulfils
strictly the differential equation of the Kirchhoff’s plate. The homogeneous part satisfies the
homogeneous part of the differential equation and the added particular part satisfies the non-
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homogeneous differential equation. The added particular terms enables considering the
effect of the external loading at the finite element level. The free parameters are related to
the degrees of freedoms of the element in an analogous way adopted in the conventional
finite element displacement approach. As a result, the shape functions are separated into
two parts, a homogenous part related to the degrees of freedom of the element and a new
non-homogenous part dependent on the element loading at the finite element level. For the
convenience of the reader the way of constructing the displacement basis will here be
recalled. Stiffness matrix, external equivalent loading vector and new terms resulting from
the application of the modified finite element method will be concluded in details.

The application of the modified finite element approach is based on the incremental
form of the principle of virtual displacement. A simple iterative incremental procedure is
adopted in order to analysis some plate examples of different boundary conditions. The
results are compared with those produced by MSC Patran [25] as well as an analytical
solution [26], and showed that the modified method presented an improved solution.

Basic Formulations

A rectangular plate element with 12 DOFs is shown in Fig.1, Based on Kirchhoff-
Love theory for thin plates, the displacement components u, v and w in the x,y,z directions
in a plate element can be expressed in terms of the corresponding mid-plane displacement
components u°, v°, w® and the rotations 6,, 8, of the mid-plane normal along x and y axis

u(x,y,z) =u’(x,y) + z.6,(x,y) (1)
v(x,y,2) = v°(x,y) +2.60,(x,y) (2)
w(x,y,z) =w’(x,y) 3)
Where :
adw

Hy = _E (4)

Fig. 1 : Degrees Of Freedom For Thin Plate [1]
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For large deflection analysis, the strain vector at any point of the rectangular plate
element is

B ou N 1 (OW)Z )
fx = 5 T2 \ox

_ av N 1 (HW)Z ©)
vy = dy 2'\0y

B 1{0u N ov N (6W> <8W) 7
v =2\ 0y Tax " \ox/) \ay
€z = &Exz = &yy = 0 (8)

Where : {Sxx ' Eyy exy} : are the normal and shear strains respectively.
Substituting Egs. (1,2,3,4) into (5,6,7) the strain can be written as

&j =Mij + Z. xij )
In which
Exx Xxx nxx
&ij = {gyy y Xij = {Z'Xxsf}i Nij = {z'nxy} (10)
Exy ) Xyy Nyy
2
(E'(W,x) \l Woxx
N =141 205 Xj=—1 Woy 11
/ E (W,y) | g {W,x-w,y} ( )
\ Wy W,
For thin plates, the constitutive relationship can be expressed as
o 1 0 9| e
XX E 1 _ 19 XX
Oxy ¢ = J0 —— 0].4&y; (12)
{Uyy} 1-92 - {gyy}
V) 0 1
Where :

{Uxx » Oyy axy} : are the normal and shear stresses respectively.
Internal forces for differential element in thin plate is shown in Fig. 2 and the internal
forces for thin plates are given as following

Mx 3 1 O 19 Xxx
E.h 1-9
xy =57 a0 —— 0] Z-Xxy (13)
M 12(1 —-92) X
Y 9 o 17
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Fig. 2 : Internal Forces For Differential Element In Thin Plat [1]
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Where :
{Sx,Sxy,Sy} : are the membrane forces vectors in the mid-plane,

My, M,, ,My} are the bending moment vectors.
3
= 1251'}_1192) . is the bending stiffness coefficient for thin plate.
The governing differential equations for large deflections of thin plates
according to Von Karman formulation :

0%¢ 9*w  0°%Q 0*w 02%Q 0*w
D.V4W=q(x,y)+h.<—2 ) (15)

Fx.0y 9x.0y  9y? ox2 | 9x2 9y?

- 2w \° 8w 92w 16
— \\ox.ay 0x2 " dy? (16)
Where :
@: is the stress function.

ay=20" o 9%
V'O =2+ 372 + - is called the biharmonic operator.

These two Egs (15,16) are coupled, nonlinear, partial differential equations,
each of fourth order. Unfortunately, there isn't any exact solution for these Egs, also
the analytical solutions based on Navier's and Levy's methods can't be used to derive
stiffness matrices in finite element approach, so we are unable to use these two EQs
in the modified method presented in this study. We formulated an approximation
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function for the deflection that satisfy the differential equation of the linear analysis of the
Kirchhoff’s plate, which is

D.V*w = q(x,y) (17)
And used it in the non linear case. The following parametric form of the deflection
satisfies the homogenous part of the differential equation.
w,y) =cot . x+ .y +c3.x?+cpx.y+cs.y% + . X3+ c7. x% y + cg.x. Y2
+co. V3 + c1p. X3y + c1q.x.¥3 (18)
In the framework of the modified finite element method, the parametric form is
extended in order to consider the element loading at the finite element level.
Formulation Of The Modified Method With The Particular Terms
1- Modification Of Displacement Function And Shape Functions
In order to capture the effect of the external loading at the finite element level the
parametric form is extended to contain fifteen parameters instead of twelve.
wx,y) =cotc.x+cpy+c3.x% +cax.y+c5.y? + . x3 + c7. x%. y + cg. x. Y2
+co. V3 4+ C10. X3V + 1. . Y3 + 010 X2 Y% + 03Xy + cppox. Yt
+ 5. x3. 93 (19)
In turns the element loading with different intensities at the element nodes is
approximated by the following parametric form :
Ca
C=2
) ={1 x y xy}{c, (20)
Cq4
By substituting displacement function in the differential equation (17), then taking
the load function as in Eq (20) and matching both sides of the resulting relations some of
the parameters can be related to the load intensity.
(Cat)
8
C12 C

1

R
N

w

4 ¢y > (21)
€15 24
C(74-
\'72J
By substituting the nodal coordinates in the load function and taking the inverse then
substituting in Eq (19), we obtain the modified displacement function

()
S
S
B I
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-1 47
X (€0
C1
C3
X.y Cs I{q(l)\l
yZ Cs (7(2
Mf=| 3 ,ck_<c6>;ﬁ=4(7(35(23)
x%.y C7 lﬁ(‘”J
x.y? Cg
y3 Cg
3 C10
x°.
3; \C11/
x.y°]
2 .2 4 4 3

_ 1-x.y xty x.yt x3.9%) (-
M..:—,{ } Al (24.a
VoD Ug 24 24 72 4] (24.0)

2z 23 2 (24.b)

Where

[A] : is the matrix depend on the element geometry and the material properties.

In the special case, when load function is constant (for example distributed load)
q(x,y) = g, the modified displacement function in its two parts (homogeneous and non-
homogeneous) and in the absence of external moments (m, , m,,) becomes as follows :

-1 1T .
x (COW
1
y ¢
x? c
3
X.y Cs
2 2 .2
y Cs Xy _
x2.y o
x.y? Cg
y? (f"
3 10
x }; \C11/
Lx. Yy~

In order to find shape functions, we apply the algorithm of FEM on two parts
of displacement function. The homogeneous part is well known in literatures [1,10],
while the non-homogeneous part is as follows

Nlm(e) is the homogeneous part of shape functions.

N;; @ is the non-homogeneous part of shape functions which is given in detail in
Appendix A.

Um(e) - are the nodal displacements.

p’ : are the nodal forces.
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2- Incremental Form Of The Principle Of Virtual Displacement
Using the incremental form of the principle of the virtual displacement as a
variational basis for FEM-displacement approach requires that the first total energy
variation of the deformed domain in an increment is equivalent to zero
dAnr =0 (27)
From a given state of equilibrium the corresponding u displacements are replaced
by a new displacement state u; with a small difference
;= uf +uy = Gygq = U + Dy (28)
u; . increment in displacement.
;. unknown situation for displacement.
this lead to a small increment in stresses and strains
gij :Eioj+AEij; O-L'j :O'i(;-'i‘AO'ij (29)
e{’j ,a{} - strain and stress tensors for initial state (linear) respectively.
Ag;j, Aoy; - small increments in strain and stress tensors.
The principle of virtual displacement becomes

j6(A€ij)cijkl€£ldv+j6(A€ij)cijklA€kldV = ffl(g(AWl)dV (30)
14 14 %4
O-ij = Cijkl.é'l'j (31)

cUkl - is the elasticity tensor.
Transforming from the 3D-form to the 2D thin plate form, the Eq(31) becomes

f §(Ag;;) kel dA + f 8(Ae;j)c* Mgy dA = f §;6(Aw;)dA (32)
A A A

The left side of the Eq(32) consists of four main terms they are :
T1 = JS(Agij)CijklflgldA

A

[, 64(N;.w + N ;. p7). ¢ A(N . W +

Ny..p")dA (33)
Where
€ij = Nij. W+ N;;.p/; &g = Njg. W + Ny pt (34)
N;;, Ny, : are the second derivative of the shape functions (homogeneous part).

’

N;; , N, : are the second derivative of the shape functions (non-homogeneous part).

By  multiplying the  brackets and  noticing that the  terms
({fA(S(N,ij'ﬁj)'Cijkl'lv,kl'dA} == 0) and ({fA6(1\,,L]ﬁj)Cl]kl(Iv,klﬁl)dA} = 0)
because when we took first variable of nodal displacement they were known values, and
we know that variable of known value is zero.

T, = lgw. {f Nij.cijkl.Nkl.dA}.vT/ + Sw. U Nij.cifkl.(ﬁkl.ﬁl).dA}l (35)
A A
Where
Ky = {fA Nij.cijkl.Nkl.dA} . represents the linear bending stiffness matrix for thin

plate.
Ry = {f, Nyj.c7¥. (N ;. p). dA} : new term using the modified FEM.
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1 o o
T,=Tz = E.faA(Ni.v—v +N.p").MY.A(N;.w + N;.P/)dA (36)
A

N;,N; : are the first derivatives of the shape functions (homogeneous part).
N, ,IVJ- . are the first derivative of the shape functions (non-homogeneous part).

Also by multiplying terms between brackets and applying the same above
notice

1 iy o
T, =§.[6w.{f Ni.MlJ.Nj.dA}.WJrcSW.U Ni.M‘J.(Nj.ﬁf).dA}l (37)
A A

Where
.. xx xy
Mi = [%yx %w] (38)
Kge = {fANi.Mif.Nj.dA} . represents the combined action (bending and
membrane stiffness matrix) of thin plate.
R, = {J,N;.MY.(N;.p7).dA} : is the new term results from modified FEM.
MY : is the bending moments matrix.
The fourth term results from membrane forces in thin plate (after multiplying
the brackets and applying the same notice)

1 iy .
Ty=s5. [6\/.7 {f Ni.S‘J.Nj.dA}.vT/ + 6w U N;.SY. (NJ-.PJ).dA}l (39)
A A
Where
o [S¥E S
S = [Syx Syy] (40)
K; = {fA N;.SY. N;. dA} : represents geometric stiffness matrix.
Ry = {[,N;.SY.(N;.P7).dA} : is the new term results from modified FEM.
S : is the membrane forces matrix.

The right side of Eq (32) represents external forces work, substituting Eq (26)
in it results

A A
By substituting Eqs (35,37,39,41) into Eq (32) results
Where
1
[KE + KEG + EKG:I = [KT] (4‘3)

Ky @ is the tangent stiffness matrix for geometric nonlinear analysis of thin
plates.

Numerical Examples And Discussion

In this section, we will test and assess modified FEM through several
geometrically nonlinear applications. Numerical results obtained by the present
method are discussed and compared with those obtained from analytical and
numerical solutions if available. In all examples, 40 equal incremental load steps are
used, unless specified otherwise, and the convergence tolerance is taken to be 0.01.
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A Clamped Thin Plate Subjected To Uniformly Distributed Load
A clamped thin square plate (A) subjected to a uniformly distributed load g = 2 %
10*psi is presented here. The thickness of the plate is h = 1.0in , the side length of the

square plate is a = b = 200in, and the material properties are E = 2 X 10!psi , 9 = 0.3
as Fig 3 shows.

The calculated central deflection of the square plate obtained from the present

method (modified FEM), FEM, MSC Patran [25] and the analytical solution [1,26] are
shown in tablel.

Central deflection | Difference
Method Mesh (w, inch) %)
Analytical [1,26] | 10x10 1.2 -
FEM 10x10 1.2805 6.7%
MSC Patran [25] | 10x10 1.2611 5%
Modified FEM | 10x10 1.2258 2%

Table 1 : Central Deflection In Thin Clamped Square Plate (A)

It can be observed from the table 1 and Fig. 4 that, the central deflection results from
modified FEM is closer to exact solution from other methods. The Relationship between
central deflection and distributed load of thin clamped square plate is shown in Fig 4 for

mesh (6 x 6) and (10 x 10). Also we draw the Relationship between nondimensional
central deflection (w/h) and nondimensional distributed load (q.a*/E. h*) for mesh
(10 x 10) as shown in Fig. 5.

e //Ixf iy

% } 7
AmmmmEEEEE
Y AY x 7AAEEEHEH

f—> 7 { H

/4 A 0 0
v R

{ W/ Boundary conditions and mesh
Y/ /4 for plate (A)
vtoa [ 7T | 1 | Y/ te2oon

=254mm £/ /=5080mm | @ 2x10%si =138 Mpa
Ew2x10%psiw 138X 10" Mpa

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

#=030

Fig. 3 : Clamped Thin Square Plate (A)
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Linear 10x10

0.4

02 M-FEM 10x10

Maximum central deflection w
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—e—FEM 10x10

0 5000 10000 15000 20000
Distributed load q (psi)
Fig 4 : Relationship Between Central Deflection And Distributed Load Of The Thin Clamped Square Plate (A)

1.6 -

1.4
=00
1.2 oa-0-0-- 0

0.8

0.6 —=— M-FEM 10x10

w/h

0.4 —e—FEM 10x10

0.2

0 50 100 150
(g*an4)/(E.h"4)

Fig 5 : Relationship Between Nondimensional Central Deﬂection(%) And Nondimensional Distributed

4
Load (%) Of The Thin Clamped Square Plate (A)
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Bending moment
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4.0e+07 (Ib.in) M_xx 5 M_yy
3.0E+07
—o—M - FEM
2.0E+07 - Analytical Solution
1.0E+07 FEM
R\ A
0.0E+00 \
\ /
b~ a et
-1.0E+07 . - . Nodal
coordinates
-2.0E+07
0 20 40 60 80 100 120 140 160 180 200 220
Membrane forces
(Ib) N_xx ; N_yy
1.0E+08
+ -
8.0E+07 —~ M- FEM — A
Analytical Solution
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4,0E+07 *77*7*7'\ /v\
LA ~NC N ARY N
2.0E+07 Nodal
0.0£400 o | | { | | | Goprdinates
0 20 40 60 80 100 120 140 160 180 200 220

Fig 6 :Bending Moments(M,, , M,,) And Membrane Forces (N,,, N,,) Of Thin Clamped Square
Plate (A) For Line Of Nodes At Center

The effect of modified FEM on internal forces (bending moments , membrane forces) of
thin plates is shown in Fig 6, where the first diagram represents bending moments (Mxx ,

- - a . a .
M,,,,) for line of nodes located at coordinates (x =2,y =0-1ix E) where (i =1 -

10)and the second one represents membrane forces( N, , Nyy) for the same line of
nodes.

It is obviously clear that internal forces results from modified method are in good
agreement with analytical solution, while there is a difference between FEM and analytical
solution. That is because modified FEM takes into account the differential equation of the

problem when we form displacement function.

A Clamped - Simply Supported (Parallel Sides) Thin Plate From Aluminum

Subjected To Uniformly Distributed Load

A clamped-simply supported thin square plate (B) subjected to a uniformly
distributed load g = 500psi is presented here. The thickness of the plate is h = 1.5in , the
side length of the square plate is a = b = 50in, and the material properties are E = 1.0 X

107psi , 9 = 0.3 as Fig.7 shows.

The Relationship between central deflection and distributed load of thin clamped-

simply supported square plate is shown in Fig 8 for mesh (10 x 10).

The calculated central deflection of the square plate obtained from the present

method (modified FEM), FEM and the analytical solution [1,26] are shown in table 2.
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Fig 9, represents bending moments (M,,, M,,) for line of nodes located at
coordinates (x = %,y =0>ix* %) where (i = 1 > 10).
Fig 10, represents membrane forces(N,, , N, ) for the same line of nodes.

' L9 X b
4> it
Y/, [
. Prrrrd
{ '/ / Boundary conditions and mesh
V// 4 for plate (B)
h=1 Sin 4 ’ b=S0in ’ = 7
38 10 /7 ,=12mm | q =300Psi=3.45Mpa
, /) | ' |
Yo E = 107Psi = 68950Mpa
| i / . ]
) 3:50ne1270mm 3 §=03
Y !

Fig. 7 : Clamped - Simply Supported Thin Square Plate (B)

Central deflection | Difference
Method Mesh (w , inch) (%)
Analytical [1,26] | 10x10 1.958 -
FEM 10x10 2.1144 8%
Modified FEM | 10x10 2.0265 3.5%

Table 2 : Central Deflection In Thin Clamped - Simply Supported Square Plate (B)
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2.5

1.5

Linear Solution

0.5 —&— M-FEM 10x10

Maximum central deflection (inch)

—o—FEM 10x10

0 100 200 300 400 500
Distributed load q (psi)

Fig 8 : Relationship Between Central Deflection And Distributed Load Of The Thin Clamped - Simply
Supported Square Plate (B)

Bending moment M PO
(Ib.in) =

-4.0E+04

-3.5E+04

-3.0E+04 //./.’_.\.\-\\.\
-2.5E+04

-2.0E404 —M - FEM e
-1.5E+04 . .
/ —&— Analytical Solution \\\
-1.0E+04
—=—FEM \\
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0 10 2P ¥ 40 \‘0 coordinates
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(a) : Bending Moment M,
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Bending moment
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Supported) Of Thin Square Plate (B) For Line Of Nodes At Center
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It can be observed from table 2 and Fig. 8 that, central deflection results from
modified FEM is closer to exact solution (Analytical) from traditional FEM method.
Conclusions
1. By using the modified finite element method, the displacement
function of traditional ACM element was separated into two parts (homogeneous,
Non-homogeneous) for large deflection analysis of thin plates.
2. The results of the modified method were reasonable and in good

agreement with the analytical solution especially for internal forces (bending
moments — membrane forces).

Appendix A

N,y Na,7)
—3.x2.y%2(9%2 - 1)(2a3.b3 + a® + bO||| 3.x%.y?(¥% —1)(—2a3.b® + a® + b3)
- a3, ] - a3, |
=3x%.y2(b* +1).(92 - 1) - 3x%.y%2(b3 - 1).(¥% - 1)
16.E. b2. h3 (18) 16.E. b2. h3

N(LZ) =

3x2.y2(¥% —1).(a® —a +1) _ 3x2.y2(¥%—1).(—a®*+a + 1)
Naz) = Neo) =

N1 N110)
_ =3.x%y?(07 = 1)(2a%.b® + a® - P}  -3.x%y?(¥% — 1) (2a’.b® —a® + b?)

E.a3.b3.h3 16.E.a3.b3 h3

Moo o =3x%.y2(b* +1).(92 - 1) 7 C3x2y?(hP - 1).(9% - 1)
@5) = 16.E.b2. h3 @1 = 16.E.b2. h3

3x2.y2(¥% —1).(—a® +a +1) _ 3x2.y2(¥9%2 —1).(a® —a +1)
w8 = 16.E.a2. 13 Naaz) = 16.E.a2. 13
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