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oABSTRACT o

With recent advancements in computing and optimization algorithms,
researchers mostly considered convex optimization problems since they
have good structure and allow to estimate rate of convergence for proposed
algorithms.

In the construction of efficient schemes for optimization problems, there
are two factors considered very important: Convexity and level of
Smoothness.

In this research, we prove a theorem which can give a weakly-convex function
when it has

v-Holder-continuous gradient. This work studies more general than in the existing
literature problems [7;13;16].
Key Words: Smooth function, Weakly-Convex function, Saddle point problem, Holder
condition.
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1 Introduction:

Convex optimization has applications in different fields, such as automatic control
systems, communications and signal processing [10], electronic circuit design [4], data
analysis and modeling, finance and structural optimization, where the approximation
concept has proven to be efficient [4; 15].

Recently, a wide study has been done to find properties for the function in saddle
point (minimax) problems of the form:

I}‘gﬁnl}l;‘:'li;{ fle.,v) ;X XY =R (1)

where f is smooth function, ¥ €T R* and Y €S R™ , n,m € N .

This problem has applications in various domains such as machine learning [6; 11],
optimization [2], statistics [1], mathematics [8], and game theory [12]. Given the
importance of these problems, there are several studies about different algorithms and
their convergence properties.

While most theoretical studies focus on the smooth function, several real-world problems
fall outside this class. In our research, we prove a “general theorem”, which gives the

weak-convexity of max f(x,y) in all level smoothness of f.
¥YEY )

Basic related works: In [16], they studied the smooth nonconvex concave minimax
problems
and they measured the convergence to an approximate (first order stationary points)

FOSP [13;7] of this problem which requires weak—convexity of max f(x,¥). So, they had
¥EY

proved /emma (1) (below) to guarantee weak convexity of 21;}:: f(x,¥) given smoothness
of f.
2 The Importance and the Aim of the research:

The importance of this research appears with the need to weak—convexity of the used
function in minimax problems where the function has different levels of smoothness
depend on the parameter v € (0,1].

The aim of this research is to prove that f is weakly—convex when it has v—Holder—
continuous gradients.

3 Research Method and its Resources:

We use known mathematical definitions and notions.

R? is the real vector space of dimension g, where q € H.
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4 Preliminaries and Notations for the minimax problems:

Definition 1: [16] A function f(x,y) is said to be L —smooth, for some L = 0,
if: max {[| V.f (x,v) =V .f (x"y") L1V, f (xy) =V, f (x"¥") I}

SL(lx—=x"l+ly—=y"1), Vx,x" € X,v,¥" € ¥(2)

Definition 2: [5] Let the function f be a convex and subdifferentiable on X,
then for the constant L, < 400 , ¥ x,x" € X, its gradient with respect to x satisfies
the Holder Continues Condition if:

IV (' y) =V fley) <L, lx—x"17

(3)

where v € (0,1].

We note that when v =1, f will be a smooth function and when v < 1, we get
a lower level of smoothness.

Let us denote the function g(-) and the mapping y*( ), that given in the set X,
as follows

g(x) = max f(x,y),v*(x) = argmax f (x,y).Vx € X. (4)
YEY YE¥

Since g(x) could be non—-smooth, Vg(x) might not even be defined, we need
first to generalize the notion of gradient1 for non—-smooth function:
Definition 3: [16] The Fréchet sub—differential of a function g() at x is defined

as the set,

dg(x) = {ul lim inf

X =X ||X—X" Il

r r
gla"l—gla) —lu, x'-x) > l]}

(5)
Definition 4: [16] A function g: X — & U {wo} is L —weakly convex if
g()2 g()— (uy x'-x)— isl}
I x'— x|, (6)
for all Fréchet subgradients u, € dg(x), ¥ x,x' & ¥
5 The Discussion of our main theorem:

The following lemma guarantees weak—convexity of g given smoothness of f

where ¥ = R™ and ¥ — R™ is convex compact set:

!For non-smooth problems, i.e., when the objective function f is non—differentiable, we
cannot use the gradient. For the non—differentiable functions, there is an important notion,
which is the generalization of the gradients for differentiable functions. This notion is

subgradients.
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Lemma (1): [16] Let f(.,y) be continuous and Y be compact. Then
g(x) = max f(x,y) is L —~weakly convex, if f is L-weakly convex in x (Definition 1), or
yEY
if £ is L—smooth in x.
We generalize this fact making lemma (1) a special case when v = 1. Since in the
following theorem (1) the gradients of f are v—-Ho&lder—continuous for v € (0,1] and that

introduce the universal case of smoothness for the used function f.

The Main General Theorem (1): Let f(.,y) be continuous, ¥ be compact set. If f

has v-Holder—continuous gradient for some v € (0,1], or if f is L-weakly convex in x

w.r.t. norm ||-||, then g is L—-weakly convex in x w.r.t. norm ||-||. Also, we have
d g(x) = conv {Bxf[x,}r* (x])‘ vi(x) =arg i]_léi}iff[x,}r]},‘?'x EX. (7)
where conv {-} means the convex hull of a given set [14].
Proof:

Since f has v—Holder—continuous gradient with respect to x, then we have

IV ' v) =V fley) IL<L, lx—x"IIV, Yx,x' € X . (8)
By notice that  f (x",y) — f (x,5) = [{Vf (x+ t(x' —x),¥),x' - x ) dt,
thus

f [:xfr}?] - f (.’z‘(,}?] _{?f [:xr}rjle_ x}

< [HVF (x +t(x' — x),3) —Vf (x,¥),x' - x ) dt,

therefore

If (x",9) — F(xy) —AVf (x,3),x"- x )
1
gf VF (x+ t(x’ —x),9) — VF (6 3),x'- x ) | dt
o
1
< f I VF (x4 t(x' — %),5) —VF (6,3 Illl x'- x || de
]
1
gJ. N VF (x+t(x' —x),v) = VF (,9) Il x'- x || dt
- D 1
£'~33'f Ll e’ —x) 1"l %'~ x [ dt
i)
1

. L, .
=L Ilx" —x ||l+"f tVdt =—— || x' — x |*.
o 1+wv
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Thus, we find that

flx'v)z fley)+ (VFf(xy), x'-x)— —_— lx' —x It

1+w
{\displaystyle X}
Here we have two cases:
*Incase || x'-x||=1:
(1+v)® _ l#2v v 2(1+v) | i

<

1+v 1+v 1+vw 1+w 1+ )

14+v-=

Therefore
r r I.-.,. ¥ 2 i
FO'y) 2z floy) + (VF (y), x'-x)— - llx' —x] T

R I
= f (6 + (VF (), &'~ x )= -l x' —x =l =" —x II%

v

we —_—
L, X Ly ~Tev
where L=2"2 ||x' —x |7 < 2L D :
14w 1+v @O

Dy=sup, yex lx'—xl, v € (0,1].
Then
L, X
fy) =z foy) + (Vf (oy), x'-x )= 7= D™ Il x' —x I

L

it means that f isan L < E%DF — weakly convex.
*Incase | x'-x||<1:

1+v=2-14+v=>2-1—-v=2—-(1+1+v),
therefore, we have

" —x 1Y —x T

So f (xll!}rj = f (.’I,_}F] + {Ef (.‘J‘.'J._'_I,F], x"— x :}— L ” x" —x ”3—':14-1'}

1+v
— ' L
=f (3 + (VF (ny), x'- x)— =
I — o 179 — )2,
where here we consider
L=2 i I ¥ —x ”—':1+1':' < 2 _L"" D;Li""":';
1+w 1+w

Dy=sup, yex llx'—x|l, v € (0,1].

Thus, we only need to prove the case of L—weakly convex f (., vy]).

Since f (., v) is L-weakly convex and u_ € d_f (x,y), we get that,

FQy) 2 f o)+ (ug, x'-x)— 5 Ix' —x
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Therefore
4 : x L -
FGy) +302 IP= f (xy) +3 This means that f(x,6) ==f (x3) + 5 Ix s

convex, since d_f (x,t) = a_f (x,¥) + Lx [9].

Let §(x) = ?E.;iff (x,v). Since f (x,y) is convex in x and smooth, and ¥ is
compact set, we use Danskin’s theorem [3] to prove to that
dg (x) = conv {ﬁxf[x,}r*(x)) ‘ vi(x) = argil_léli};:f(x,}r)},‘v'x E X
= dg(x)+ Lx = conv {Bxf[x,}r* (%)) + Lx ‘ v*(x) = arg i]_lgigf[x,}r]},

= dg(x) = conv {axf[xr}’*&))‘ yi(x) = ﬂrggig!;f(x,}?)}, )

where the last two steps are true because of the facts
8g(x) =dg(x) + Lx, 8,f (x,¥) =9,f (x,¥) +Lx
. L ,
and argmax f(x,y) =argmax f(x,y) + = ll x I*= argmax f(x,y).
yE¥ YEF 2 yEY

Let y*(x) = arg ma};f[:x,}r], then
VE

glx") = f[x',}r* [x]) =la) f[:x,}r* (x]) + {um_-,:x},x'— x) —% lx" —x 1%,

L 9
=0 g() 2 9(0) +{vex'-x) = Sl —xI?,

where (a) uses L-weak convexity of f(.,y), and (b) uses (9) and v, € dg(x). So

g is L-weakly convex in x and 0g(x) is defined in (O) v x € X.
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6 Conclusion:

In this research, we study more general case of weak-convexity in
optimization problem than in the previous works s.t. the function f depends on its
v—HOllder—continuous gradient to get weak—convex function g. Therefore, we have
different level of smoothness of f related to v € (0,1]. So maybe we can design
new faster converging schemes for solving minimax problems or any other

problems.
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