
92 
 

0202( 6( العدد)4المجمد ) الهندسيةالعموم طرطوس لمبحوث والدراسات العممية  _  سمسمة  مجمة جامعة   

Tartous University Journal for Research and Scientific Studies - engineering Sciences Series Vol.  (4) No. (6) 2020 

 
 الى النحو المبرمج الحرالتحويل الكمي لمنحو الشكمي المبرمج المقيد 

 

 *يعرب شحادة ديوب د.                   
 

 (2020/ 9/ 6قُبِل لمنشر في  . 2020/ 10/8تاريخ الإيداع  )
 

 □ممخّص  □
ان النحو الشكمي المبرمج المقيد غني وذو امكانيات واسعة تسمح باستخدامو لتنفيذ التحميل النحوي لمختمف 

. إلًا ان استخدامو يتطمب مزيدا" من الوقت ,وذلك لاحتواء قواعد الاشتقاق عمى قائمة انواع سلاسل الدخل المحرفية
بأرقام قواعد الاشتقاق الممكن استخداميا لدى التنفيذ الصحيح والخاطئ لقواعد الاشتقاق المتاحة, وكذلك ارسال التحكم 

 الى رقم قاعدة الاشتقاق المحددة اصلا" وبشكل عشوائي . 
حث لمتخمص من المشاكل المطروحة أعلاه من خلال تحويل النحو الشكمي المقيد الى نحو من يتطرق ىذا الب

الشكل الحر , وبالتالي توسيع مجالات استخدام ىذا النوع من النحو , وتنفيذ التحميل النحوي لعبارات الدخل بشكل 
 افضل وسيولة استخدام اكبر.  

 تحميل.-قاعدة اشتقاق  -حقل التنفيذ الخطأ- حقل التنفيذ الصح– النحو :الكممات المفتاحية
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 سورية -طرطوس –كمية ىندسة تكنولوجيا المعمومات والاتصالات .جامعة طرطوس  - تقانة المعمومات ىندسة استاذ مساعد في قسم*



 , ديوب      المبرمج الحرالتحويل الكمي لمنحو الشكمي المبرمج المقيد الى النحو 
 

03 
 

0202( 6( العدد)4المجمد ) الهندسيةالعموم طرطوس لمبحوث والدراسات العممية  _  سمسمة  مجمة جامعة   

Tartous University Journal for Research and Scientific Studies - engineering Sciences Series Vol.  (4) No. (6) 2020 

 
GLOBAL CONVERTING NON-FREE-CONTEXT 

PROGRAMED FORMAL GRAMMAR INTO FREE-

CONTEXT TYPE 

* D.Yaroub Dayoub 
 

(Received 02/8/2002. Accepted 6/ 9/2002) 

 

□ ABSTRACT □ 

The non-free context programmed formal grammar has rich and powerful 

possibility for describing and executing the syntaxis analysis of different string input 

types, but using this formal grammar requires additional time for applying 

recommended production rules included in additional two success and failed to-go 

fields and transfers the control to the randomly selected  serial number of production 

rule which was recommended to use in applying process in result the a raised  

problems decreases the fields where it can be used.      

This article introduce an approach to eliminate the above mentioned problems 

through converting the non-free context programmed formal grammar into free-

context type and expanding its exploitation fields where it can be used, then executing 

the syntaxis processes more easy and better. 

Keywords: Field, grammar, success, failed, production rule, syntaxis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* assistant, Department of Technology Engineering, Faculty of Technology Engineering of  

Information and  Communication, Tartous University, Tartous- Syria. 

 



  0202Tartous University Journal.eng. Sciences Series( 6( العدد)4المجمد ) اليندسيةالعموم  مجمة جامعة طرطوس 

 

03 
 

1. Introduction: 
The programed formal grammar non-free context type (type-1 by Chomsky 

classification) provided with special set of production rule for some secondary elements 

used as subset production rules started with same let side secondary element and different 

right side[1,5] ,where each production rule body starts with the sequence serial number, 

core, failed to-go field and successes to-go field(four elements). 

This structure of production rule permits executing syntaxis analysis for wide range 

of different string input series (formal language) which recovers various scientific fields. 

After each applying of formal production rule, it necessary to check all these fields 

and this it will be, require large additional time. 

Any  production rule of the set related to the specified secondary related element can 

substitute by any right side of similar production rules started with the same secondary 

related element[  2,4]  at left side, so the length of selected path depending so far on the 

number of defined formal production rules related to the used number of secondary 

elements, so the total number of the production rules so far depending on the used number 

of production rules. 

The selection of the production rules with the left or right recursion and applying 

them in syntaxis process requires very big extra spend syntaxis analysis time   where this 

can leads to faulty applying of production rules and so long passed path to make the 

syntaxis analysis of input string series in best condition (the input series is correct) and the 

result of syntaxis analysis can be negative also (all production rules of related production 

rule was  used and the input string was faulty organized)  which can require  applying a set 

of production rules, and this requires very big analysis time and this mater limit the using 

of programed formal grammar non-free context type. 

For discarding above mentioned problems and decreasing the required for syntaxis 

analysis time it important to make the selection of the applying production rule of given 

formal grammar is very accurate and discard the possibility of faulty using of production 

rules,  in result it's possible to minimize the number of returning the parent vertexes and so 

reducing the number of intermediate steps required for doing the syntaxis analysis of input 

string series. 

 

2.Importance and aim of this work: 
This article try to discard the above mentioned raised problems through executing the 

syntaxis analysis of input string series ,and minimized the required time by reducing the 

number of failed applying production rules through deleting the sequence serial number of 

production rule, failed to-go field and [3,5] success to-go field and substitute them by 

Boolean expressions ,where  each production has special related expression with two 

possible values "true" (represent logical value "1") or "false" (represent logical value "0"),if 

the expression evaluated to "true" the related production rule will be used, otherwise 

wouldn't be used, so the production rule of recommended formal grammar  has only 3 

elements.   

 

3. Search methods and materials: 
 The formal generated languages by non-free contest programmed formal grammar 

(type1) aren't powerful and not so enough to describe the natural languages and 

programming languages, for this reason it's not sufficient for executing syntaxis analysis of 

natural and programmed languages. 



 , ديوب      المبرمج الحرالتحويل الكمي لمنحو الشكمي المبرمج المقيد الى النحو 
 

09 
 

The set of production rules related to each secondary element is limited, in result, 

the set of possible to generate string series similar to input string series is also limited, 

so this kind of formal grammar is very weak instrument for executing the syntaxis 

analysis input string related to natural or programing languages.  

From other side each production rule has limited number of possible to use 

formal production rules in failed to-go field and succeed to-go field in addition to the 

sequence serial number of the production rule, these fields must be checked at each 

intermediate operation through executing the syntaxis analysis of input string.    

The programmed formal grammar defined as set of five elements as follows:  

G ={VT ,VN , S,J ,P}       where: 

            VT /VN-finite set of terminal /non-terminal elements (characters), 

            V = VT U VN  –dictionary of G , V = VT  VN  =      , SVN-start symbol,  

            J –label of production rule. 

             A   ,  - can substitute by any production rules   {                
},  

             A VN   ,  V
*
(*-zero, one or more occurrence) 

                                         . 
              P-Finite set of grammar's productions rules with following format: 

ℓ     ∝ Υ      S(U)       F(W)          ,  

                                                                              where: 

           J-Finite set of labels. 

         S(U)/ F(W)- succeeded / failed to-go field respectively. 

U/W-list of labels where to-go if the substitution operation of the production rule 

was succeeded /failed respectively, where U, W   J. 

The  syntaxis analysis starts with applying the first production rule (ℓ=1) if there 

is any production rule has the same right side or can generate the same element in 

given input string, then it will be check if the applying of production rule was 

successful the next serial number recommended to use production rule is selected from 

the succeeded  

to-go field " S(U) " otherwise the next expected to use serial number  of 

production rule is selected from failed to-go field " F(W) ", in both conditions the next 

production rule for applying will selected randomly, in result executing more useless 

operation through syntaxis analysis of input string, which requests more time for 

recognition input string and using this grammar wouldn't be suitable. 

From above mentioned remarks at each applying of production rule it's necessary 

to check first the right sight of production rules to find the searched input string 

element  then succeeded / failed to-go field respectively taking in consideration the 

labels at which starts each production rule and this increase the syntaxis analysis time 

of input string and generally if applying of production rules was failed it's necessary to 

return to the parent vertex  for selecting next production rules serial number. 

It very important to notice the fact, where after applying many production rules it 

is possible to find at the end of partially or totally processing of syntaxis analysis the 

searched input element was not recognized (was faulty organized) and this increases 

the required time for executing syntaxis analysis. 

It's very important to discard all as possible the useless operation and parts of the 

production used rule, by replacing succeeded / failed to-go field S(U)/ F(W) by bodies 

of production rules it selves in both conditions and discard also the labels  
nii

l
,1, 

   of 



  0202Tartous University Journal.eng. Sciences Series( 6( العدد)4المجمد ) اليندسيةالعموم  مجمة جامعة طرطوس 

 

00 
 

used production rules and through giving each production rule with an weight, which will be 

used later for giving (or not) permission in applying processes at different intermediate steps 

of syntaxis analysis. 

 

4. Discussion: 
At  each applying of production rule it's necessary to check first the label with which 

the production rule start then core through checking the first element of right sight of the 

production rules if equal the searched input element  if the answer was "yes" it will be use 

any production rule of recommended to use production rules in case  succeeded lets suppose 

consisting of "m" production rule or failed to-go field taking consisting of n rules, so the total 

number of possible executing operation "N" at each step of syntaxis analysis is given as 

follow: 

N=m+n+1;               (1) 

Where: 1-the number of labels of production rule. 

 

If the formal grammar contains "K" production rules, so maximum expected to use 

production rule is calculate by the next formula:  

              Ntotal =N*K=( m+n+1)*K           (2) 

It's clear that is each applying of production rule through executing syntaxis analysis of 

input string requires  " Ntotal "  time unite additional by comparing with using other types of 

formal grammar this makes it complex to use with low using efficiency value and this leads 

to put some bounders of using programmed formal grammar with a high spend time for 

recognizing input string.  

Here it is necessary to solve raised different problems with using programmed formal 

grammar type through eliminating the succeeded S(U) and failed F(W) to-go fields with the 

labels of production rules by the production rules themselves and in this condition discard the 

un necessary labels of production rules.  

Each production rule of succeeded S(U) and failed F(W) to-go fields has  special 

weight given as Boolean expression w nii ,1, 
  , where depending on it's the evaluated value it 

will be use the related production rule in condition "true" value otherwise the related 

production rule wouldn't be use and the processes will be continue to find any production 

rule starts with right side equal to input element  otherwise the input string wouldn't be 

recognized and the syntaxis analysis gives a message that's the input string was faulty 

constructed. At each step of syntaxis analysis for string input, it's possible to recognize two 

conditions: 

 

a)For the first element of given string input, there is only one production rule at 

maximum  with w nii ,1, 
= "true"  value which can be used at current step of syntaxis analysis  

if and only if the current input element equal to terminal element at left side(using left or 

right recursion) of selected to use production rule and discard all remain production rules 

from visiting list ,then the next input element will be taken for continuing analysis processes 

string then it will be check the weight of next (second) production rule if it was in "true"  

condition it will be used in syntaxis processes otherwise it  will look for any weight in "true" 

condition ,so it will be selected to all production rules with true condition up to get the end of 

the expected to use production rules set. 



 , ديوب      المبرمج الحرالتحويل الكمي لمنحو الشكمي المبرمج المقيد الى النحو 
 

03 
 

b)There aren't any weight w nii ,1, 
= "true" ,so it will be fix an error message that 

is the input string was constructed faulty.  

In both conditions the number of possible to use production rules was minimized 

by k*(m+n) times. 

For decrease the required for syntaxis analysis time it's recommended to replace 

the succeeded / failed to-go field S(U)/ F(W) with set of production rules for each one 

of production rules .let's suppose the set of production rules for succeeded to-go field 

S(U) as the following(by the same way can be construct the set of production rules for 

the failed to-go field F(W) ):  

 

  w1 
1
        

:
1w t>c1 | d>c2  

 w2 
2
         :

2w  t=c3 | d<c4                   (4)     

  w3 
3
         

:
3w t>c5 & d!=c6  

………………………………………………….. 

  wn 
n
         :wn

t<cn & d>cn+1  

Where:
 

w1
,

2w wn...  -Boolean expression (the weight of production rules). 

                             
!

1w !
2w wn...                (5) 

                              VTU VN=V
 


,
 


1
,

2
,

3
,…,

n
V

*
VNV

*
  (*-zero, one or more occurrence)  V

*
  

t-expired time for related applying of production rule, d-the length of passed 

path. 

c1, c2,…,cn+1-some integer constants used as limiters. 

In the free -context programed grammar it was inserted the production rules set 

itself instead of their sequence serial numbers (labels) and if the weight of first 

production rule where can recognized this two conditions: 

1) 
""

1
truew 

 the related production rule will be used in current intermediate 

step of syntaxis analysis and all other rules will be discarded from the processes at this 

moment and it will be repeated the above mentioned operations. 

2) If 
""

1
falsew 

,it will be check if the weight of second production rule 

""
2

truew   so it will be used in syntaxis analysis processes, this processes will be 

repeated to get the end of given input string. 

If  all elements of input string was simulated by production rules because their 

weights was in "true" condition , the string input was correctly constructed and if any 

input element wasn't recognized the input string will be refused and error message will 

be given. 

 

The recommended free-context programmed formal grammar is defined as four 

tuples as follow: 

 

 Gp ={VT ,VN ,P , S }    Where: 



  0202Tartous University Journal.eng. Sciences Series( 6( العدد)4المجمد ) اليندسيةالعموم  مجمة جامعة طرطوس 

 

03 
 

VT/VN-Finite set of terminal/non terminal elements respectively. 

S-start symbol (element) 

P-finite set of production rules with next format: 

   wi 
i
        

:wi t>c1 | d>c2                  (6) 

    Where: 

              wi
-the weight of production rule with sequence serial number "i". 

               t/d-expired time/long of distance respectively. 

              C1,C2-positive numeric constants used as limiters. 

              V
*
, 

i
V

*
VNV

*
   

As seen from above the production rule's format consisting two parts the core and it's 

weight only and the succeeded and failed to-go fields and the production's label also are 

eliminated. 

Each production rule of formal grammar  s nii ,1,    has special weight w nii ,1,  , which 

permits to change the production rule from non-free context (type1)to free-context 

type(type2) and minimizing the number of used production rules by Nmini times as follow: 

Nmini =N*K=( m+n)*K              (7) 

In the result, the required time to make syntaxis analysis is minimized by Nmini time 

units unite of time and in the result the efficiency of using like this formal grammar was 

increased by the same value Nmini, this type of formal grammar opens widely different fields in 

control systems. 

At each intermediate step of syntaxis analysis it possible to use only one production 

rule if the input element is equal to any left side element of production rules and the related 

weight w nii ,1,  was in "true" condition ,so no place to be faulty use the production rules and 

no need to return to parent vertex . 

 

EXAMPLE: 

Suppose it is required to make the syntaxes analysis of the next input expression 

X=0
n
1

n
0

n
          (8) 

By using, the recommended non-free context programmed formal grammar: 

For generation the given input string let's suppose the following conditions: 

     n=3-the occurrence number of each input element, 

     Nderv.lev=6-he number of derivation levels, 

     Nweight=19 -the number of related weights w nii ,1,  ,  

For making syntaxis analysis, the number of possible to use formal production rules is 

calculated with the formula.              Ntotal=2
n
*nsub+1              (9) 

            where : 

                    n-the occurrence of input character,(let's suppose n=3) 

                   nsub-the number of sub-tree  (let's suppose nsub =3). 

By substitution in formula (9) we get the  Ntotal=2
n
*nsub+1=2

3
*3+1=25    

Therefore, the relation 8 takes the next form: 

                                  X=0
3
1

3
0

3
         (10) 

 

Let's construct the recommended free-context programmed formal grammar "Gf" for 

executing the syntaxis analysis of input string "X" , which defined as four tuples as follow:  

 



 , ديوب      المبرمج الحرالتحويل الكمي لمنحو الشكمي المبرمج المقيد الى النحو 
 

03 
 

Gf ={VT ,VN ,P , S } 

          Where: 

                    VT/VN-Finite set of terminal/non terminal elements respectively. 

                     VT={0,1},   VN={S,A,B,C,D,F,Y}, 

                     S-start symbol (element), 

                     P-finite set of production rules with next format: 

1: <S> 1 <D> <F> <Y> , 
        

   
1 : d=3 & f1=0 |f1=1  

2: <S> 2 <A> <B> <C>,           2 : d>3 & f2=0   

3: <A> 3 0 <A> ,
 
                         

3 : d>3 & f1=0   

4: <A> 4 1 <A>,                         4  
: isend&f2=1.                   (11) 

5: <A> 5 0,
 
                                   

5 : isend&f1=0 

6:<A> 6 1,
 
                                    

 6 : d!=2 & f2=1   

7:<A> 7  ( -empty string)    7 : isend & f1=
     

8:<A> 8  <B>                              8 :L>=1 

9:<A> 9  <C>                                9 :L>=1 

10: <B> 10 0 <B> ,
 
                      

10 : d>3 & f1=0   

11: <B> 11 1 <B>,                        11  
: isend&f2=1  

12: <B> 12 0,
 
                                  

12 : isend&f1=0 

13:<B> 13 1,
 
                                    

13 : d!=2 & f2=1   

14:<B> 14  ( -empty string)   14 : isend & f1=
     

15:<B> 15  <C>                    15 : d<3 & f2=0 

16: :<B> 16  <A>                   16 : d>3 & f1=0 

17: <C> 17 0 <C> ,
 
                         

17 : d>3 & f2=0   

18: <C> 18 1 <C>,                         18  
: isend&f1=1                      

19: <C> 19 0,
 
                                   

19 : isend&f2=0 

20:<C> 20 1,
 
                                    

20 : d!=2 & f1=1   

21:<C> 21  ( -empty string)    21 : isend & f2=     

22:<C> 22  <A>                               
 22 : d<=10 & f1=1   



  0202Tartous University Journal.eng. Sciences Series( 6( العدد)4المجمد ) اليندسيةالعموم  مجمة جامعة طرطوس 

 

03 
 

23:<C> 23  <B>                                
 23 : d>=5 & f2=1   

……………………… 

Where: 

             d-length of expected to pass path.    ,   L,f1,f2-optional constants. 

             f1 {1,  ,0}-previously input element 

w nii ,1,    ={1 ,2 ,..,23 -special weights of production rules with sequence serial 

number "i":  

isend-function answers on the question if there was casting finishing reanalysis 

processes.  

 

Let's construct the binary syntaxis tree for input string      X=0
3
1

3
0

3
    through using 

the recommended free-context programmed formal grammar (11).            

The syntaxis binary tree for string input consisting of 6 levels and three branches so 

the expected to use Ntotal=2
n
*nsub+1=2

3
*3+1=25   number of production rules. 

Suppose the failed to-go field F(W) of labels for production rules is empty and 

succeeded to-go field S(U)=3,Here  it's possible to meet tow conditions: 

1) Input string was correctly constructed t.e XL(G) (X-an element of generated by 

formal programed grammar set of string series) (case a).  

 

a) Using traditional non-free context programed formal grammar. 

The number of expected to use production rules Nexpec.non in syntaxis analysis is the 

multiplying of number of vertexes possible to use Nver.non  at each vertex  by the expected 

number of production rules with the same at left side  Nexpec.ver  which calculated by the 

next formula: 

Nexpec.non=Nver.non* Nexpec.ver=13*5+1=66. 

-Tthe minimum number Nmin.suc.prog and the maximum  number of used production 

rules  in case the input string was correctly(succeeded to-go field will be use) constructed 

(XL(G) as follow:   

Nmin.suc.non= Nexpec.non +Nintermid .ver =66+2=68. 

where: 

Nintermid .ver -the number of intermediate used vertexes (represents in our case the 

vertexes "S"  and "Z"  ,so  Nintermid .ver=2  ). 

-The maximum number Nmax.suc.non  number of used production rules consisting of 

The number of expected to use production rules Nexpec.non  and the numer of production 

rules with the same left side Nrecom.ver in syntaxis analysis t.e:   

Nmax.suc.non= Nexpec.non +Nrecom.ver =68+11=79. 

In result the average number of possible to use production rules Naver.prog  is given as 

follow: 

Naver.non= (Nmin.suc.non + Nmax.suc.non )/2=(68+79)/2=82.5 

b) Using recommended free-context programed formal grammar. 

The maximum possible to use number of production rules Nmax.free in syntaxis 

analysis is the result of multiplication the total number of possible to visit vertexes by the 

number of expected to use production rules is calculated by the next formula:  

Nmax.free= Nver .free *Nexpec. free=14*1=14. 

While the minimum possible to use number of production rules Nmin.free in syntaxis 

analysis is calculated by the next formula:  



 , ديوب      المبرمج الحرالتحويل الكمي لمنحو الشكمي المبرمج المقيد الى النحو 
 

03 
 

                Nmin.free= Nver .free=14 

The average number of possible to production rules Naver.suc.free is given as 

follow: 

Naver.free= (Nmax.free+ Nmin.free)/2=(14+14)/2=14. 

 

2) Input string was faulty constructed t.e  X   L(G) (X-isn't an element of 

generated by non-free context formal programed grammar set of string series    

 

e) Using non-free context programed formal grammar. 

  

The minimal number of used production rules is consisting of minimal number 

of used production rules in succeed case Nmin.faild.non-free and the number of expected 

to use production rules Nexpec. non-free  calculated as follow: 

   

Nmin.faild. non-free = Nmin.suc.non-free  +Nexpec. non-free  =68+18=86. 

 

-At case of using failed to-go field the maximum number of used production 

rules Nmax.suc .non-free includes the maximum number of used production rules in 

succeed case Nmax.suc.non-free and the number of not used production rules Nnot-used. non-

free  is calculated as follow:  

Nmax.faild .non-free = Nmax.suc.non-free. +Nnot-used. non-free. =79+18=97. 

 

Let's calculate the average number of used production rules in failed input 

(non-free context) as follow:  

Nave. faild.non-free = (Nmin.faild. non-free  + Nmax.faild .non-free)/2=(86+97)/2=91.5 

 

 

f) Using recommended free context programed formal grammar 

 

In faulty applying of production rule the minimum number of used production 

rules is only one production rules with the Boolean expression evaluated to "false" 

value Nmin.faild.free= 1 and no more than production rules will be use and the syntaxis 

analysis will be terminates immediately and fix an input error pointing that’s the 

input string was faulty constructed.  

While the syntaxis analysis can star with one of two possible to use formal 

grammar so the maximum number recommend to use of production rule is  

Nmax.faild.free= 2. 

It's very important to notice that the average number of using production rules 

in failed constructed input string is calculate as the following: 

 

Nave. faild.free   =(1+2)/2=1.5 

 

This factor gives this free context programmed formal grammar more new 

possibilities and open for it new using technical and scientific fields. 

 

 *Regarding to the above-mentioned results we recognize two conditions: 

 



  0202Tartous University Journal.eng. Sciences Series( 6( العدد)4المجمد ) اليندسيةالعموم  مجمة جامعة طرطوس 

 

02 
 

a) The input string was constructed successfully t.e, XL(G) lets the find the value 

of decreasing factor Nmin.decr as the difference between the value of two conditions through 

using non-free context then free- context  programed formal grammar t.e  as follow: 

Nmin.decr =68-14=54 

By the same way the the decreasing factor is:  

Nmax.decr =79-14=65 

 

b) The input string was constructed successfully t.e, X   L(G) lets the find the value 

of decreasing factor Nmin.decr as the difference between the value of two conditions 

Through using non-free context then free- context  programed formal grammar t.e  as 

follow: 

                                  Nmin.decr =86-1=85 

By the same way the the decreasing factor as follow: Nmax.decr =115-2=113.We 

summarized all these results in table.1 

 

Table1. The used number of production rules for non-free & free-context types 

formal grammar. 

 

 

 

 
 

 
Fig2. Relation between non-free & free-context formal grammar. 

 

 

0 0 0 0 0 0 

68 79 86 97 82.5 91.5 14 14 1 2 14 1.5 

54 
65 85 

113 

59.5 
99 

123456

Relation between the used number of production rules and 
formal grammar type 

Non-free context programed

Free-context programed Enhancement value

 XL(G) X   L(G) NAver 

Nmin Nmax Nmin Nmax XL(G) X   L(G) 

Non-free context 

programed 

 

68 

 

79 

 

86 

 

97 

 

82.5 

 

91.5 

Free-context 

programed 

14 14 1 2 14 1.5 

Enhancement value 54 65 85 113 59.5 99 



 , ديوب      المبرمج الحرالتحويل الكمي لمنحو الشكمي المبرمج المقيد الى النحو 
 

33 
 

Conclusions: 

The minimized structure of production rule of recommended non-free context 

programmed formal grammar permits the following operations: 

- Eliminate failed /succeeded to-go field and the production rule's serial 

sequence number. 

- Minimized structure of production leads to minimize the required time for 

executing 

the syntax analysis of input string. 

-Each production rule has special Boolean expression, which can be evaluated 

to "true" or "false" value, it will no necessary to return to the parent vertex.  

-Increasing the power of programed formal grammar and simplifying the 

structure of the grammar and became easy simple to use. 

-The above mentioned factors gives the grammar the possibility to use in 

different new fields. 

REFERENCES: 

1.Luis M Augusto. Languages, Machines, and Classical 

Computation Paperback – February 4, 2019. 

2.Luis M. Augusto, Languages, machines, and classical computation, London: 

College Publications, 2019. ISBN 978-1-84890-300-5. Web page. 

3.C Mag Staff ."Encyclopedia Definition of Compiler". PCMag.com. 

Retrieved  2017 

4. Sun, Chengnian ; Le, Vu; Zhang, Qirun; Su, Zhendong (2016). "Toward 

Understanding Compiler Bugs in GCC and LLVM". ACM. 

5. Silberztein, Max (2013). "NooJ Computational Devices". Formalizing 

Natural Languages with NooJ. pp. 1–13. ISBN 978-1-4438-4733-9. 

6. 35 المجلد   2013 معة البعث,مجلة جا"  " نمذجة المحادثة التعليمية المؤتمتة مع الكائن . د.يعرب  

 ديوب

7.Dayoub.y. Predictive adaptive dynamic object's traversals control, Tartous 

univer.Voluem 3,N:6 (2019). 

 

 

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Luis+M+Augusto&text=Luis+M+Augusto&sort=relevancerank&search-alias=books
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-84890-300-5
http://www.collegepublications.co.uk/computing/?00022
https://www.pcmag.com/encyclopedia/term/40105
http://dl.acm.org/citation.cfm?doid=2931037.2931074
http://dl.acm.org/citation.cfm?doid=2931037.2931074

