2020 (6)2l) (4) Maal) dputigh asal) Alades _ Apalad) cilufilly Gigall Gughaph Aasly Alas

Tartous University Journal for Research and Scientific Studies - engineering Sciences Series Vol. (4) No. (6) 2020

Al gl gaill L adall gajall IS5 gaill <) gy gl

*gad Baladd s L
(2020/ 9/ 6 b »aill 3 2020/ 8/10 g)ay) ub)

| uada |

Calisal geatll Jilaill 3l Aaladinly cand daudy GG 53y e 2l majuall JSED il o
Lali e GEAY) acld olga¥ g Cigl e lage callaiy aelasinl o) Y] Agad) Jaall Wl g s
aSatll Jlu) Gl dabiall BEAY) ac sl fLalally pmall Al oo Lgaladind (Saall BEEY) aclgd A6,
- Slsdie ISy Sl saaad) Y 52 8,)

o 53 G adal) SN sall Jisad DA e ode daghaall JSLEA (e paliall il 13 35k
IS Jaal) el el Jilall danis ¢ saill (e gl 1 aladind CVlae g My ¢ all J<)
OS] alasin) A ey Juadl
il i) sacls —Uaall dgnll Jia— meal) 3050 Jis— il sdalidal) cilals)

Aygms — sty — Gustayla daala, YLy Cilagheall Lingl 55 Auvia G = laslaall A5 dtia and b o L iud®

29

2020 (6)a2l) (4) Maal) dputigh asal) Alades _ Apalad) cilufilly Gigall Gughash dasly Alas

Tartous University Journal for Research and Scientific Studies - engineering Sciences Series Vol. (4) No. (6) 2020

GLOBAL CONVERTING NON-FREE-CONTEXT
PROGRAMED FORMAL GRAMMAR INTO FREE-

CONTEXT TYPE
D.Yaroub Dayoub *

(Received 10/8/2020. Accepted 6/ 9/2020)

o ABSTRACT o

The non-free context programmed formal grammar has rich and powerful
possibility for describing and executing the syntaxis analysis of different string input
types, but using this formal grammar requires additional time for applying
recommended production rules included in additional two success and failed to-go
fields and transfers the control to the randomly selected serial number of production
rule which was recommended to use in applying process in result the a raised
problems decreases the fields where it can be used.

This article introduce an approach to eliminate the above mentioned problems
through converting the non-free context programmed formal grammar into free-
context type and expanding its exploitation fields where it can be used, then executing
the syntaxis processes more easy and better.

Keywords: Field, grammar, success, failed, production rule, syntaxis.

* assistant, Department of Technology Engineering, Faculty of Technology Engineering of
Information and Communication, Tartous University, Tartous- Syria.

30

Tartous University Journal.eng. Sciences Series 2020 (6)23x)l (4) aladl) duxigll aslall @ (ushyla daala dlas

1. Introduction:

The programed formal grammar non-free context type (type-1 by Chomsky
classification) provided with special set of production rule for some secondary elements
used as subset production rules started with same let side secondary element and different
right side[1,5] ,where each production rule body starts with the sequence serial number,
core, failed to-go field and successes to-go field(four elements).

This structure of production rule permits executing syntaxis analysis for wide range
of different string input series (formal language) which recovers various scientific fields.

After each applying of formal production rule, it necessary to check all these fields
and this it will be, require large additional time.

Any production rule of the set related to the specified secondary related element can
substitute by any right side of similar production rules started with the same secondary
related element[2,4] at left side, so the length of selected path depending so far on the
number of defined formal production rules related to the used number of secondary
elements, so the total number of the production rules so far depending on the used number
of production rules.

The selection of the production rules with the left or right recursion and applying
them in syntaxis process requires very big extra spend syntaxis analysis time where this
can leads to faulty applying of production rules and so long passed path to make the
syntaxis analysis of input string series in best condition (the input series is correct) and the
result of syntaxis analysis can be negative also (all production rules of related production
rule was used and the input string was faulty organized) which can require applying a set
of production rules, and this requires very big analysis time and this mater limit the using
of programed formal grammar non-free context type.

For discarding above mentioned problems and decreasing the required for syntaxis
analysis time it important to make the selection of the applying production rule of given
formal grammar is very accurate and discard the possibility of faulty using of production
rules, in result it's possible to minimize the number of returning the parent vertexes and so
reducing the number of intermediate steps required for doing the syntaxis analysis of input
string series.

2.Importance and aim of this work:

This article try to discard the above mentioned raised problems through executing the
syntaxis analysis of input string series ,and minimized the required time by reducing the
number of failed applying production rules through deleting the sequence serial number of
production rule, failed to-go field and [3,5] success to-go field and substitute them by
Boolean expressions ,where each production has special related expression with two
possible values "true” (represent logical value "1") or "false” (represent logical value "0"),if
the expression evaluated to "true" the related production rule will be used, otherwise
wouldn't be used, so the production rule of recommended formal grammar has only 3
elements.

3. Search methods and materials:

The formal generated languages by non-free contest programmed formal grammar
(typel) aren't powerful and not so enough to describe the natural languages and
programming languages, for this reason it's not sufficient for executing syntaxis analysis of
natural and programmed languages.

31

"y Al sl a2l o) KN pail G (Jypal

The set of production rules related to each secondary element is limited, in result,
the set of possible to generate string series similar to input string series is also limited,
so this kind of formal grammar is very weak instrument for executing the syntaxis
analysis input string related to natural or programing languages.

From other side each production rule has limited number of possible to use
formal production rules in failed to-go field and succeed to-go field in addition to the
sequence serial number of the production rule, these fields must be checked at each
intermediate operation through executing the syntaxis analysis of input string.

The programmed formal grammar defined as set of five elements as follows:

G={Vr,VWn, SJ,P} where:

V1 /Vn-finite set of terminal /non-terminal elements (characters),
V=V7U Vy —dictionaryof G,V=V1 VN =0 ,SeVy-start symbol,
J—label of production rule.

A— o, a. can substitute by any production rules { o« — 0A ,aa — 0

Ae Vy ,aeV (*-zero, one or more occurrence)
€ — empty string of charaters.
P-Finite set of grammar's productions rules with following format:

t x=Y SU) FW) ,

where:
£ J-Finite set of labels.
S(U)/ F(W)- succeeded / failed to-go field respectively.

U/W-list of labels where to-go if the substitution operation of the production rule
was succeeded /failed respectively, where U, W < J.

The syntaxis analysis starts with applying the first production rule (£=1) if there
is any production rule has the same right side or can generate the same element in
given input string, then it will be check if the applying of production rule was
successful the next serial number recommended to use production rule is selected from
the succeeded

to-go field " S(U) " otherwise the next expected to use serial number of
production rule is selected from failed to-go field " F(W) ", in both conditions the next
production rule for applying will selected randomly, in result executing more useless
operation through syntaxis analysis of input string, which requests more time for
recognition input string and using this grammar wouldn't be suitable.

From above mentioned remarks at each applying of production rule it's necessary
to check first the right sight of production rules to find the searched input string
element then succeeded / failed to-go field respectively taking in consideration the
labels at which starts each production rule and this increase the syntaxis analysis time
of input string and generally if applying of production rules was failed it's necessary to
return to the parent vertex for selecting next production rules serial number.

It very important to notice the fact, where after applying many production rules it
is possible to find at the end of partially or totally processing of syntaxis analysis the
searched input element was not recognized (was faulty organized) and this increases
the required time for executing syntaxis analysis.

It's very important to discard all as possible the useless operation and parts of the
production used rule, by replacing succeeded / failed to-go field S(U)/ F(W) by bodies

of production rules it selves in both conditions and discard also the labels | — of

32

Tartous University Journal.eng. Sciences Series 2020 (6)23x)l (4) aladl) duxigll aslall @ (ushyla daala dlas

used production rules and through giving each production rule with an weight, which will be
used later for giving (or not) permission in applying processes at different intermediate steps
of syntaxis analysis.

4. Discussion:

At each applying of production rule it's necessary to check first the label with which
the production rule start then core through checking the first element of right sight of the
production rules if equal the searched input element if the answer was "yes" it will be use
any production rule of recommended to use production rules in case succeeded lets suppose
consisting of "m" production rule or failed to-go field taking consisting of n rules, so the total
number of possible executing operation "N" at each step of syntaxis analysis is given as
follow:

N=m+n+1,; (1)

Where: 1-the number of labels of production rule.

If the formal grammar contains "K' production rules, so maximum expected to use

production rule is calculate by the next formula:
Niotal =N*K=(m+n+1)*K 2

It's clear that is each applying of production rule through executing syntaxis analysis of
input string requires " Nt " time unite additional by comparing with using other types of
formal grammar this makes it complex to use with low using efficiency value and this leads
to put some bounders of using programmed formal grammar with a high spend time for
recognizing input string.

Here it is necessary to solve raised different problems with using programmed formal
grammar type through eliminating the succeeded S(U) and failed F(W) to-go fields with the
labels of production rules by the production rules themselves and in this condition discard the
un necessary labels of production rules.

Each production rule of succeeded S(U) and failed F(W) to-go fields has special

weight given as Boolean expression \\/ —— , where depending on it's the evaluated value it

will be use the related production rule in condition "true™ value otherwise the related
production rule wouldn't be use and the processes will be continue to find any production
rule starts with right side equal to input element otherwise the input string wouldn't be
recognized and the syntaxis analysis gives a message that's the input string was faulty
constructed. At each step of syntaxis analysis for string input, it's possible to recognize two
conditions:

a)For the first element of given string input, there is only one production rule at
maximum with \p/ .= "true" value which can be used at current step of syntaxis analysis

if and only if the current input element equal to terminal element at left side(using left or
right recursion) of selected to use production rule and discard all remain production rules
from visiting list ,then the next input element will be taken for continuing analysis processes
string then it will be check the weight of next (second) production rule if it was in "true"
condition it will be used in syntaxis processes otherwise it will look for any weight in "true”
condition ,so it will be selected to all production rules with true condition up to get the end of
the expected to use production rules set.

33

"y Al sl a2l o) KN pail G (Jypal

b)There aren't any weight \\/. .= "true” ,so it will be fix an error message that

is the input string was constructed faulty.

In both conditions the number of possible to use production rules was minimized
by k*(m+n) times.

For decrease the required for syntaxis analysis time it's recommended to replace
the succeeded / failed to-go field S(U)/ F(W) with set of production rules for each one
of production rules .let's suppose the set of production rules for succeeded to-go field
S(U) as the following(by the same way can be construct the set of production rules for
the failed to-go field F(W)):

9 Wy 181 9 Wl:t>C1 | d>c,
G-We, B9\, tecs|d<cy (4)
19 L)ﬁa‘ 19 WS:t>C5&d!:C6

g s 8 W, :t<Ch & d>Cpsg

Where:

W, W, .. W, -Boolean expression (the weight of production rules).
Wl!: WZ!:---Wn (5)
VTU VN:V

g ﬂl,ﬁz ﬁsﬁn eV'V\V (*-zero, one or more occurrence) & € V"

t-expired time for related applying of production rule, d-the length of passed
path.

C1, Cp,...,Cn+1-SOMe integer constants used as limiters.

In the free -context programed grammar it was inserted the production rules set
itself instead of their sequence serial numbers (labels) and if the weight of first
production rule where can recognized this two conditions:

1) W= U™ the related production rule will be used in current intermediate

step of syntaxis analysis and all other rules will be discarded from the processes at this
moment and it will be repeated the above mentioned operations.

2) If w, =" false it will be check if the weight of second production rule

W, ='true” so it will be used in syntaxis analysis processes, this processes will be

repeated to get the end of given input string.

If all elements of input string was simulated by production rules because their
weights was in "true” condition , the string input was correctly constructed and if any
input element wasn't recognized the input string will be refused and error message will
be given.

The recommended free-context programmed formal grammar is defined as four
tuples as follow:

Gp={Vr.,Vn.P,S} Where:
34

Tartous University Journal.eng. Sciences Series 2020 (6)23x)l (4) aladl) duxigll aslall @ (ushyla daala dlas

V1/V-Finite set of terminal/non terminal elements respectively.
S-start symbol (element)
P-finite set of production rules with next format:

e Wi t>c, | d>c, (6)

Where:
W, -the weight of production rule with sequence serial number "i".

t/d-expired time/long of distance respectively.
C1,C2-positive numeric constants used as limiters.

Gev, eV

As seen from above the production rule's format consisting two parts the core and it's
weight only and the succeeded and failed to-go fields and the production's label also are
eliminated.

Each production rule of formal grammar Siizn has special weight Wiz, which

permits to change the production rule from non-free context (typel)to free-context
type(type2) and minimizing the number of used production rules by Nmini times as follow:

Nmini =N*K=(m+n)*K @)

In the result, the required time to make syntaxis analysis is minimized by Npmini time
units unite of time and in the result the efficiency of using like this formal grammar was
increased by the same value Npini, this type of formal grammar opens widely different fields in
control systems.

At each intermediate step of syntaxis analysis it possible to use only one production
rule if the input element is equal to any left side element of production rules and the related

weight Wi i=nwas in "true" condition ,so no place to be faulty use the production rules and
no need to return to parent vertex .

EXAMPLE:
Suppose it is required to make the syntaxes analysis of the next input expression
X=0"1"0" (8)
By using, the recommended non-free context programmed formal grammar:
For generation the given input string let's suppose the following conditions:
n=3-the occurrence number of each input element,
Nderv.lev=6-he number of derivation levels,

Nweight=19 -the number of related weights Wiizn ,

For making syntaxis analysis, the number of possible to use formal production rules is
calculated with the formula. Niota=2"*Ngpt+1 9
where :

n-the occurrence of input character,(let's suppose n=3)

Nsup-the number of sub-tree (let's suppose Ngyp =3).
By substitution in formula (9) we get the Ntota|:2”*nsub+1:23*3+1:25
Therefore, the relation 8 takes the next form:

X=0%1%0° (10)

Let's construct the recommended free-context programmed formal grammar "Gs" for
executing the syntaxis analysis of input string " X" , which defined as four tuples as follow:

35

"y Al sl a2l o) KN pail G (Jypal

Gf :{VT ,VN ,P s S }
Where:
V1/V-Finite set of terminal/non terminal elements respectively.
Vr={0,1}, Va\={S.,AB,C,D,F,Y},
S-start symbol (element),
P-finite set of production rules with next format:

1: <S> —% 5 <D> <F><Y>, W d=3 & f,=0 |f;=1
2:<S>—@2 5 <A><C> ~ (W2:d>3 &f,=0

3 <A> @ 50 <A> Ws: d>3 & f,=0

4: <A>—Pi 51 <A>, W4 : isend&f,=1. (11)
5: <A>—% 50, @5 : jsend&f,=0

6:<A> —Do 51 W6 : d1=2 & f,=1

Ti<h>— 5 & (‘9 -empty string) @7 : isend & f1= &

8:<A> D 5 W8 :| >=1
9:<A> — 5 <C> W9 | >=1

10: —%e 50 , Who: d>3 & £,=0
11: —%1 31 , W11 : jsend&f,=1
12: —%2 4, W12 : jsend&f;,=0
13:—%: 51, W13: d1=2 & f,=1

14:—24 5 & (& empty string) @14: isend & f,= €

15:—%s 5 <C> W15 : d<3 & f,=0
16: :—%o 5 <A> W16: d>3 & ;=0
17: <C>—%1 50 <C>, Wh7: d>3 & ,=0
18: <C>—2¢ 51 <C>, 18 : isend&f;=1
19: <C>—@s 5, 19 : isend&f,=0
20:<C>—%P 51, 20: d1=2 & f;=1

21:<C>—%u g(g-empty string) @21:jisend & f,= €

22:<C>—Wz 5y <A> 022 : d<=10 & f,;=1

36

Tartous University Journal.eng. Sciences Series 2020 (6)23x)l (4) aladl) duxigll aslall @ (ushyla daala dlas

23:<C>—%= 5 (W23: d>=5 & f,=1
Where
d-length of expected to pass path. , L,f;,f,-optional constants.

f, {1, ¢ ,0}-previously input element
Wiizn ={ (W V> .. Was-special weights of production rules with sequence serial

number "i*:
isend-function answers on the question if there was casting finishing reanalysis
processes.

Let's construct the binary syntaxis tree for input string ~ X=0°1%0% through using
the recommended free-context programmed formal grammar (11).

The syntaxis binary tree for string input consisting of 6 levels and three branches so
the expected to use Nioa=2"*Nsup+1=2°*3+1=25 number of production rules.

Suppose the failed to-go field F(W) of labels for production rules is empty and
succeeded to-go field S(U)=3,Here it's possible to meet tow conditions:

1) Input string was correctly constructed t.e XeL(G) (X-an element of generated by
formal programed grammar set of string series) (case a).

a) Using traditional non-free context programed formal grammar.

The number of expected to use production rules Nexpec.non IN Syntaxis analysis is the
multiplying of number of vertexes possible to use Nyernon at each vertex by the expected
number of production rules with the same at left side Nexecver Which calculated by the
next formula:

Nexpec.non:Nver.non* Nexpec.ver:13*5+1:66-

-Tthe minimum number Nminsucprog @nd the maximum number of used production
rules in case the input string was correctly(succeeded to-go field will be use) constructed
(XeL(G) as follow:

Nmin.suc.non= Nexpec.non +Nintermid .ver =66+2=68.

where:

Nintermid ver -the number of intermediate used vertexes (represents in our case the
vertexes "S" and "Z" ,50 Nintermid ver=2).

-The maximum number Nmaxsucnon NUMber of used production rules consisting of
The number of expected to use production rules Nexpecnon and the numer of production
rules with the same left side Nrecom.ver IN Syntaxis analysis t.e:

Nmax.suc.non= Nexpec.non +Nrecom.ver =68+11=79.

In result the average number of possible to use production rules Nayerprog 1S given as
follow:

Naver.non= (Nmin.suc.non + Nmax.suc.non)/2=(68+79)/2=82.5

b) Using recommended free-context programed formal grammar.

The maximum possible to use number of production rules Nmaxfree IN Syntaxis
analysis is the result of multiplication the total number of possible to visit vertexes by the
number of expected to use production rules is calculated by the next formula:

Nmax.free= Nver free *Nexpec. free=14*1=14.

While the minimum possible to use number of production rules Npinfree IN Syntaxis
analysis is calculated by the next formula:

37

"y Al sl a2l o) KN pail G (Jypal

Nmin.free= Nver free=14
The average number of possible to production rules Nayersuc.free IS given as
follow:
Naver free= (Nmax.free+ Nmin.free)/22(14+14)/2:14.

2) Input string was faulty constructed t.e X & L(G) (X-isn't an element of
generated by non-free context formal programed grammar set of string series

e) Using non-free context programed formal grammar.

The minimal number of used production rules is consisting of minimal number
of used production rules in succeed case Nmin faild.non-free 2N the number of expected
to use production rules Nexpec. non-free Calculated as follow:

Nmin faild. non-free = Nmin.suc.non-free +Nexpec. non-free =68+18=86.

-At case of using failed to-go field the maximum number of used production
rules Nmaxsuc non-free INCludes the maximum number of used production rules in
succeed case Nmaxsuc.non-free @Nd the number of not used production rules Npot-used. non-
free 1S Calculated as follow:

Nmax.faild .non-free = Nmax.suc.non-free. TNnot-used. non-free. =79+18=97.

Let's calculate the average number of used production rules in failed input
(non-free context) as follow:

Nave. faild-non-free = (Nmin.faild. non-free T Nmax faild .non-free)/22(86+97)/2:91-5

f) Using recommended free context programed formal grammar

In faulty applying of production rule the minimum number of used production
rules is only one production rules with the Boolean expression evaluated to "false"
value Npminfaild.fre= 1 @and no more than production rules will be use and the syntaxis
analysis will be terminates immediately and fix an input error pointing that’s the
input string was faulty constructed.

While the syntaxis analysis can star with one of two possible to use formal
grammar so the maximum number recommend to use of production rule is
Nmax faild free= 2.

It's very important to notice that the average number of using production rules
in failed constructed input string is calculate as the following:

Nave. faitd.free =(1+2)/2=1.5

This factor gives this free context programmed formal grammar more new
possibilities and open for it new using technical and scientific fields.

*Regarding to the above-mentioned results we recognize two conditions:

38

Tartous University Journal.eng. Sciences Series 2020 (6)23x)l (4) aladl) duxigll aslall @ (ushyla daala dlas

a) The input string was constructed successfully t.e, XeL(G) lets the find the value
of decreasing factor Npin.gecr aS the difference between the value of two conditions through
using non-free context then free- context programed formal grammar t.e as follow:

Nmin.decr =68-14=54

By the same way the the decreasing factor is:

Nmax-decr =79-14=65

b) The input string was constructed successfully t.e, X € L(G) lets the find the value
of decreasing factor Nmin.geer @S the difference between the value of two conditions
Through using non-free context then free- context programed formal grammar t.e as
follow:

Nmin.decr =86-1=85

By the same way the the decreasing factor as follow: Nmax.decr =115-2=113.We

summarized all these results in table.1

Tablel. The used number of production rules for non-free & free-context types
formal grammar.

XEL(G) X g L(G) NAver
Nmin N max N min N max XEL(G) X f L(G)

Non-free context

programed 68 79 86 97 82.5 91.5
Free-context 14 14 1 2 14 15
programed
Enhancement value 54 65 85 113 59.5 99

Relation between the used number of production rules and

formal grammar type

=&— Non-free context programed =fll—

Free-context programed =>&=Enhancement value

== 54
E=0Bs——— 5 SR e et & L4
0 6 -0 0 6 40
6 5 4 3 2 1

Fig2. Relation between non-free & free-context formal grammar.

39

"y Al sl a2l o) KN pail G (Jypal

Conclusions:

The minimized structure of production rule of recommended non-free context
programmed formal grammar permits the following operations:

- Eliminate failed /succeeded to-go field and the production rule's serial
sequence number.

- Minimized structure of production leads to minimize the required time for
executing

the syntax analysis of input string.

-Each production rule has special Boolean expression, which can be evaluated
to "true” or "false" value, it will no necessary to return to the parent vertex.

-Increasing the power of programed formal grammar and simplifying the
structure of the grammar and became easy simple to use.

-The above mentioned factors gives the grammar the possibility to use in
different new fields.

REFERENCES:

1.Luis M Augusto. Languages, Machines, and Classical
Computation Paperback — February 4, 2019.

2.Luis M. Augusto, Languages, machines, and classical computation, London:
College Publications, 2019. ISBN 978-1-84890-300-5. Web page.

3.C Mag Staff ."Encyclopedia Definition of Compiler". PCMag.com.
Retrieved 2017

4. Sun, Chengnian ; Le, Vu; Zhang, Qirun; Su, Zhendong (2016). "Toward

Understanding Compiler Bugs in GCC and LLVM". ACM.

5. Silberztein, Max (2013). "NooJ Computational Devices". Formalizing
Natural Languages with NooJ. pp. 1-13. ISBN 978-1-4438-4733-9.

6. 35alaall 2013¢Cind) dxals dlaa " ASD ae Al gall dpagladl] Ddlaall dadad "m0
S

7.Dayoub.y. Predictive adaptive dynamic object's traversals control, Tartous
univer.Voluem 3,N:6 (2019).

40

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Luis+M+Augusto&text=Luis+M+Augusto&sort=relevancerank&search-alias=books
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-84890-300-5
http://www.collegepublications.co.uk/computing/?00022
https://www.pcmag.com/encyclopedia/term/40105
http://dl.acm.org/citation.cfm?doid=2931037.2931074
http://dl.acm.org/citation.cfm?doid=2931037.2931074

