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0 ABSTRACT o

In this paper, the influence of different ultra-thin veneer designs on the
biomechanical behavior of veneer-tooth structure system was studied using finite
element analysis; to find out which one of all these models has the best performance.
The stress distribution in the models was studied when the butt-joint, the palatal
chamfer and the window veneer designs were used under static loads.

The results showed that the use of butt-joint design reduced the average of the
maximum stresses by 13.67% and 14.77% at least compared to palatal chamfer and
the window designs respectively. Therefore, it is not recommended to use neither
palatal chamfer nor the window veneer design with the thickness of 0.3 [mm], but it
is recommended to use the butt-joint design, which improves the stability and
durability of the system and prolong its lifespan.

Keywords: Ultra-thin veneers, Preparation designs, Biomechanical behavior, Finite
element analysis.
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1. Introduction
In the light of dental restoration materials development, there is an increasing interest

for obtaining beautifully restored teeth using cosmetic veneers to restore and beautify
faded, deformed or worn teeth, especially those that located in the visible areas of the
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mouth [1]. Biocompatible composite resins are the most widely applied materials
used in dentistry as restoration and veneer materials, regards it has characteristics
similar to those of the dentin [2], and has a similar flexible module and strength when
it used for direct or indirect restorations [3].

In the reports of success rates of veneer designs, there was a success rate
ranging from 72-85% for two veneer designs (palatal chamfer and butt-joint designs)
in a five-year survey [4]. The most failure cases may be attributed to the veneer
fracture and the adhesion weakness on the tooth surface [5]. As reported, the incisor
and cervical region were the most likely to fail [6, 7]. Thus, the veneer designs are
the most important factors affecting long-term clinical success. In order to determine
the success or failure rate of veneers, the stress distribution analysis should be
performed using the 3D finite element method, which is the most efficient and
effective tool in such cases [8, 9].

The essential importance of this research is to overcome the majority of failure
cases that may occur as a result of the wrong selection of ultra-thin veneer design by
studying the stress distribution in both veneer and tooth structure using various
designs (butt-joint, palatal chamfer and the window) for these veneers, which is
affecting the biochemical behavior. Therefore, the aim of this research is to find out
the veneer design that has the best performance in the veneer-tooth structure system.

2. Material and Methods

2.1 Modeling and Meshing

3D models were established using Autodesk® Inventor™ software for incisor
tooth structure, including the enamel with a thickness of 0.3 mm and the dentin. The
tooth root was also surrounded by the Periodontal ligament with a thickness of 0.2
mm. A section of the upper jawbone was then established, including cancellous bone
surrounded by cortical bone with a thickness of 2 mm. the palatal chamfer model was
created with a thickness of 0.3 mm as shown in Fig. 1. All these models were then
exported to the ANSYS™ software to perform the finite element analysis (FEA).

(a) (b) (c)

(d) (e)

Fig. 1. CAD models: (a) butt-joint, (b) palatal chamfer, (c) the window, (d) tooth structure and (e)

assembled model.
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Due to the complexity of the geometry, tetrahedron elements were necessary. The
mesh was refined and accepted when the relative errors were less than 1%. The results of
convergence analysis are shown in Table 1 and Fig 2.
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Fig. 2. Mesh sensitivity results in terms of the maximum von Mises stress.

Table 1. Total number of elements and nodes for each component.
Components Butt-joint Palatal chamfer The window
Nodes | Elements | Nodes | Elements | Nodes | Elements
Periodontal ligament | 2267 1097 2356 1144 2400 1173

Dentin 3498 2030 3492 2026 3500 2032

Enamel 1345 579 1514 665 2567 1208

Veneer 1825 861 1896 880 1033 463
Cortical bone 2240 1032 2280 1061 2277 1064

Cancellous bone 2251 1189 2339 1255 2389 1294
2.2 Boundary Conditions
A load of 10 N with the 125° (protrusion) and 60° (tearing) angles with the tooth’s
longitudinal axis were applied at the palatal surface of the veneer as shown in Fig. 3. All
contact conditions established in this FE analysis are considered bonded [10-17]. The FEM
model is fixed at the top surface of the maxilla as shown in Fig. 3.

Py"

Vy"'

y

(a) (b) o (C)
Fig. 3. Mesh and boundary conditions
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2.3 Material Properties

All materials of the studied components were considered to be linear elastic
isotropic, taking into consideration that isotropic materials show the same mechanical
properties regardless of loading direction [18]. The reference values are taken from
previous studies [19-23]. Table 2 shows a summary of the mechanical properties
used in this study.

Table 2. Mechanical properties of the materials used in the study

Material Elastic modulus | Poisson’s ratio
E [GPa] v

Periodontal ligament 0.069 0.45
Dentin 18.6 0.31
Enamel 80 0.33
Composite resin 14.74 0.33
Cortical bone 13.7 0.3
Cancellous bone 1.37 0.3

3. Results and Discussion

The data obtained from the finite element analysis can be presented in a stress
distribution map with a color scale, which makes it possible to directly compare the
magnitude and distribution of stress of various models. These results demonstrate the
relationship between the stress distribution in the veneer-tooth structure system and
the materials of the veneer models.

One of the theories most used to determine the stress is von Mises theory [24].
This theory has been applied to determine the stress distribution of the models. From
the FE analysis, the numerical results of maximum von Mises stress obtained from
different models have been tabulated in Table 3.

It is noted from Fig. 4 that the stress distribution is not changed by the various
applied forces, but the difference is in the values of these stresses in the studied
models, and as shown in Fig. 4; the maximum stresses are concentrated in the incisal
area of the veneer whatever the material used.

The maximum stresses in the Palatal chamfer veneer are concentrated in the
incisal area. In butt-joint veneer, the maximum stresses are concentrated in the lateral
edge. The maximum stresses in the window veneer are concentrated near the incisal
area.

Table 3. Maximum von Mises stress in veneer and tooth structure

Von Mises Stress [MPa]
Component Butt-joint Palatal chamfer The window
125° 60° 125° 60° 125° 60°
Veneer 109.9 | 115.1 | 136.5 | 144.5 | 200.9 | 210.9
6 7 1 2 2 5
Tooth structure | 115.0 | 120.8 | 122.8 | 130.2 | 62.64 | 66.47
9 5 7 4

The highest maximum stresses were obtained when the window veneer design
was used under the 60° (tearing) load condition (210.95 MPa). While the highest
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values of stresses in the tooth structure were obtained when the palatal chamfer veneer
design was used under the same load condition (130.24 MPa).

The lowest maximum stresses were obtained when the butt-joint veneer design was
used under the 125° (protrusion) load condition (109.96 MPa). While the minimum values
of the maximum stresses in the tooth structure were obtained when the window veneer
design was used in the same load condition (62.64 MPa).
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Fig. 4. Distribution of the stress in different models

According to these results, it is difficult to choose the best performed material in the
veneer-tooth structure system. Therefore, the average of the maximum stresses in the
system were calculated taking into account the two forces used in this study.

From Fig. 5, It is noted that the lowest average of the maximum stresses in the
system was obtained when the butt-joint veneer design was used (115.27 MPa). While the
highest average of the maximum stresses was obtained when the window veneer design
was used (135.25 MPa). Fig. 5 also shows that the use of butt-joint veneer design reduces
the average stress by 13.67% and 14.77% at least compared with palatal chamfer and the
window veneer designs respectively.
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Fig. 5. Average values of maximum von Mises stress of the veneer-tooth structure systems.

These results can be explained by the fact that the butt-joint veneer design can
distribute the applied loads more homogeneous than the other two designs, which is
affecting the reduction of stress concentration in the veneer-tooth structure system.
Therefore, the use of this veneer design at the thickness of 0.3 mm improves the
stability and durability of the system and prolong its lifespan.

Although there is no similar study of the effect of the three different composite
ultra-thin veneer designs with the thickness of 0.3 [mm] on the biomechanical
behavior of the veneer-tooth structure system, but there are many studies have
indicated that the stresses concentrated in the incisal area [25, 26], which was in
agreement with the presented results in this study. Li et al. [21] studied the effect of
butt-joint and palatal chamfer veneer designs with the thickness of 0.5 mm on its
biomechanical behavior using the finite element analysis. They found that the using
of butt-joint veneer design showed a more homogeneous behavior than the other
model, this result was in agreement with the presented results in this study.

4. Conclusion

The use of butt-joint veneer design with the thickness of 0.3 mm reduces the
average of the maximum stresses in the veneer-tooth structure system, unlike both
palatal chamfer and the window veneer designs, which increase the average of the
maximum stresses in the system. Based on these results, it is not recommended to use
neither palatal chamfer nor the window veneer design with the thickness of 0.3 [mm],
but it is recommended to use the butt-joint design, which improves the stability and
durability of the system and prolong its lifespan.
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