el il Eipall ushshs daala Alaa _ (9) a3l (4) sl dutigh ashll Audei2020
Tartous University Journal for Research and Scientific Studies- Engineering Sciences Series Vol. (4) No. (9) 2020

Janall Alaia¥) SEN gall) aladiuly geadll Jolaill g pu

* g oaladd

(2020 /10 /28 Laill 3. 2020 / 9/ 22 £)ay) fb)

O gedlall O

Sl il e o dmy aa I adiey Jaal) Ghlal gl sl 263 ey 0
@sadll Jilaall il A6S Ay Ane lad adg adiiy o3 Jlia) S8 pmallS aadti)
Jliia) oy BEIY) ael@ JSE mill o gl 138 (305 (anadd duac Jaall chle Calidd]
30 (ya) 3Ly (Ul celad¥) adg 3 oty 8 A Aleall 5yall e Malaie) Lgaladtia
o e "BUily ¢ Aesd el oLl AplKal axel AALaYl 4By (mlidily geadl) Jalail
JSLaall o sl Caadl 13 Gpkiny Al Aalll 5@ Galias) Jull Glhid) i)
Bl 4all) 548 5al5s Jaal¥) il o adiead) gsadl) Jilaill dejus 30l o3ke) Ay yadl)

cgsn dalat - 3yad — 3l 3aclE — KA sail) rdalidal) claldl)

YL Ty laslaall L sl a8 lasleal) 206 Austia pusd 3 e Le 3k #
Ay ~pashyh = Gushyl daala

2020 (9) 232 (4) Alaal) Lpcusigh bl Ades _drsalall ciluyally Eigasdl ushss dasly Alas
Tartous University Journal for Research and Scientific Studies- Engineering Sciences Series Vol. (4) No. (9) 2020

SPEEDING UP THE SYNTAXSIS ANALYSIS USING
MODEFIED STOCHASTIC FORMAL GRAMMAR TYPE

Dr. Yaroub Dayoub*

(Received 22/ 9/2020 . Accepted 28/10/2020)

0o ABSTRACT o

The speed of syntaxis analysis, of input series depends, so far on the type of
used formal grammar as stochastic type, which can generate very rich and powerful
languages, for executing syntaxis analysis of different complex input string, but the
everisticaly given applied probability for each production rule can reduce the
resolution and increase the required time for executing the syntaxis analysis of input
string, which can case infinite syntaxis analysis ,in addition to there is possibility to
construct only one tree starting with, the start element. In this paper was introduced
an approach to sole above mentioned problems and increasing the of the generated
formal grammar.

Keywords: Applied probability, formal, grammar, rule, tree, syntaxis, series, analysis.

*ph.d.Yaroub Dayoub. assistant, Department of Technology Engineering, Faculty of Technology Engineering
of Information and Communication, Tartous University, Tartous- Syria.

10

Tartous University Journal. Eng. Sciences Series 2020 (9) 34} (4) laall duwtigl) a slalidialall o gh b daala dlaa

1. Introduction:

While executing some operations as data transmission, transaction, correction or
measuring physical parameters of different phonemes, it is necessary to, recognize any
form of the studied objects, this can cause infinite process.

Because the used for specifying the object’s state with or without raised noise, can
leads to find some objects belong to many different classes, t.e one string series can be
generated by different formal grammar in result can be raised unsolved problems like

what is the type of used formal grammar for specifying given object?.

2. Importance and aim of this work:

The stochastic formal grammar with, the specified everisticaly applied probability
value for each production rule make this type is powerful and can generate very rich
formal languages so enough for executing syntaxs analysis for big variety of input series,
but the applied probability value given for production rule is selected everisticaly ,this
method can causes may problems ,t.e increasing the required time and in result the
efficiency analysis factor became very low.

In some cases the low unsuitable applied probability value prevents using a
production rule where this necessary to make and this leads to gets fault results and

where the big unsuitable applied probability value wouldn’t be use.

3.Search methods and materials:

For modeling different controlled objects it was used the stochastic formal grammar
where not wishes production rules are given very low probability expected value. But the
value of using production rules probability staid without limitation and defined everisticaly,
which can leads to fault and without result execution.

Stochastic formal grammar is defining as four tuples:

Gs= (Vn, V1, Ps, S) (1)

Where:
Vn [Vr - finite set of non—terminal / terminal elements respectively.
S € Vy . start symbol (element).
Ps: finite set of stochastic production rules, which has two next forms:
o, —sny, j=ln . i=1k 2)
Where:

11

Yy Jaeall Jlia¥) JK30 pail) Aadinls goaill Jilal agped

ai e (VN UV;)*VN (VN UV;)*1 VRS (VN Vs)*

P - probability using of related production rule in condition

n

Zpij =1 (3)

[
0<Ph; <1,
i=1 j=1
Production rule (2) means string series "¢i" can directly substitute by un
and if there is a string series X =¢, ¢, it takes the form X =g 7,c, with

using of production rule probability Pij .its necessary to notice the next relation:

P —
ai=¢ =0, +1,0,=¢ +1,1=1n (4)
This means string series "a," generates "5," with probability 'P' which

defined as the multiplication probability of all used production rules, i.e.

P=]]P (5)
i=1
it is clear that relation reflectively and transitively.
The stochastic generated formal language L(GS) is defined as follows:

(@)=L PI)IX <V, oy, =K, P()= 3R} o

Where:
k .the number of generated string seriesc P, . probability generation of

string series.
L(Gs) - L(Gs)

< L(GS)Typel - L(GS)TypeO (7)

The stochastic generated language L (G,)

Type3 Type2

ype3 is a stochastic language of any

type L(G,) and L(G,)Typez is a stochastic language L(G,)Typel and the last

one is stochastic language L (G,)Type

Type2

, at the same time[1,7,6].

Stochastic formal grammar restricts the using of production rule, through
specializing each production rule with its applying probability value, so the applying
probability of each set of production rules started with the same (non—terminal) left

side element and different right side defined as follow:

P=>2 P =1 (8)
i
Where:

/. the sequence serial number of the non—terminal. /. the serial number

of the production rule related to a set S, |k -1n .

12

Tartous University Journal. Eng. Sciences Series 2020 (9) 34} (4) laall duwtigl) a slalidialall o gh b daala dlaa

As seen from above the applying probability of production rules is defined
everisticaly, i.e there is possibility to arise some errors, caused faulty results (from one
side). From other side all the production rules related to one set must have different
terminal at right side, this eliminates the possibility to has different production rules with
the same at right side (non—terminal) element but different followed set of non-terminal
which decrease the power of generated stochastic language, which leads to increasing
the required time for executing syntaxs analysis and low efficiency of using like this
grammar(1,4,,6,8].

Using this grammar makes the constructing of syntaxes tree with multi-sub—tree is
very difficult, so the constructed syntaxs tree starting with one start element, discard the
possibility to minimized the structure of constructed syntaxes tree, so more faulty using of
production rules and in result more expired time in best case(the input string was
correctly) , but in worst condition(the input string was faulty constructed) it will use all
possible production rules , this leads to many backtracking to parent vertexes and
increase the required for syntaxes analysis time. In result small effect of using this type of
formal grammar[2,5].

Generated string series(by using stochastic formal grammar) can belonged to any
type of formal grammars, which makes the definition of class of the generated series
belongs to is very difficult, and so arise serious problems [4,7,8]how to define the class to
which the generated string series belongs to?

Let's suppose we have the stochastic (context-free) formal grammar G; is defined
as follows:

Gs=(VT,VN,PS,S) ,Where:

V={A[,Az,...,AcBy,...,.Bk} — finite set of non—terminal elements.

Vi<{a,...a,} — finite set of terminal elements ,S=A-Start symbol , i=1k

13

Yy Jaeall Jlia¥) JK30 pail) Aadinls goaill Jilal agped

nv)

=

I
-

M- 1M
2 LM

Il
[N
o

Pc=1

]

N

]
From above it is clear these facts:

> If there are some production rules with the same using
probability, so the randomly selection of next recommended to use
production rule will be use, and this leads to many faulty applying of
production rules.

> The production rules with the same start element has
applying probability “p”, so no possibility to construct any sub-tree starting
with the same start element, in result the syntaxis tree will grows horizontally
and decrease the power of possibility constructed syntaxis tree, and the
possibility to generate string language will be restricted, and using this type
of formal grammar doesn’t permit executing syntaxis analysis of wide range
of input string series.

> The given for each production rule using probability " 7 "
everisticaly is defined, i.e, there is a possibility to make some mistakes,
which causing faulty applying of production rules.

> It is very important to have some production rules with the
same value of applying probability which permits fo construct many different
sub-tree starting with any number of child vertexes, but without using
randomly selection of proposed to apply production rule.

> No inference of next expected to use in applying process
production rule, where it is necessary to use given applying probability to

estimate the next possible to use production rule.

4.Discussion:

Through studying above mentioned problems, raised question how to
eliminate them?, increasing the grammar power and decreasing the expired spend
for executing syntaxis analysis time.

If we specify each production rules with the weight W, .i=1k, which

consisting of two parameters Pi. i ,i=1K \where'

p; —probability values of using production rules, Ri— Boolean expression

14

Tartous University Journal. Eng. Sciences Series 2020 (9) 34} (4) laall duwtigl) a slalidialall o gh b daala dlaa

The production rule (2) takes the following format:

a; M)nij (10)

Where:

izl,_k, jzl,_k,ozi eVy , 1 eV’

The production rule with probability ~; will be using in applying if the Boolean
expression . i —1—k is in true condition and in result the symbol o, would replace by
e otherwise it will be searching for new production rule with Boolean expressions Foy
e in condition

" true" if all Boolean expressions in condition r, =false” ,so the syntaxis analysis
will issues error message the input string series was faulty constructed this structure of
recommended formal grammar permits having many production rules with the same value
of applying probability P, t.e. possibility to construct syntaxis analysis tree with many
sub-trees starting at any child vertex, so supports with a wide range of different input
string series and impact the number of possible to use production rules.

If we have "m;' production rules with the same applying probability ' #; "and set of

different Boolean expressions

.= SO it possible to build ' (m1 —1)" additional sub—

tree.

In condition the formal grammar consisting of set of 'n; 'different production rules
with the different applying probability '#; "and various Boolean expression" 7; " (various
production rules can have same Boolean expression), so it is possible to construct “£”
different sub—tree which can calculate by this formula:

p=n, (M, —1) @ayn

Let's suppose each parent vertexes contains "k;' child vertex , so the total possible
to construct string series is given using the next form:

£=p*k, (12)

Using this type of production rule permits constructing many sub-tree with same

start symbol(see fig.1).

15

Yy Jaeall Jlia¥) JK30 pail) Aadinls goaill Jilal agped

Fig.1.syntaxs tree with 'n" subtree using one start element.
S Wy (P.n) 3 77i
S W, (Prp) ; ﬂu (13)

Suppose we have the number of production rules with the same start symbol
is " ¢" each production rule with start element S’ can construct one sub-tree with
number possible to use production rule, so the number of possible to use

production rules is N, =¢*c regarding to formal (13) and (14) the power " p" of

star

recommended formal grammar is increased as follows:

p=0+Ng,
p=n*k (m —-1)+¢*C @4

Providing a set of production rules with everisticaly applying probability values
of using production rules which supported with related Boolean expression,
eliminates the possibility to make any error because the applying of production rules
depends on two different parameters

pi , i ,(see fig.2) ,where the Boolean expression delete the possibility of
using production rule.

This kind of formal grammar permits having many production rules with the
same left side and different right side increasing the possibility to construct
additional sub-tree, in result generates very rich powerful formal languages which
suitable for different purpose.

let's suppose it's required to make syntaxs analysis of the following given

digital series as

16

Tartous University Journal. Eng. Sciences Series 2020 (9) 34} (4) laall duwtigl) a slalidialall o gh b daala dlaa

X ="10110.110" and string series Y="ab&ba" ,now for executing syntaxis

analysis of X

we construct the necessary stochastic formal grammar with the following set

production rules P;;

1:S, W;>< integP ><.>< floatP > Wi p1=0.5, ri: integP!=""

2:S, Viz>< 0 ><.>< floatP > W;: p1=0.5, rp: integP! =0

3:S, VE< 1 ><.>< floatP > W3: p;=0.5, r3: integP ! = 1

4:S, ﬂ< integP >< e >< floatP > W,: py=0.5,
ry: integP contains e

5:S, XS>< integP >< E >< floatP > Ws: p1=0.5, rs: integP contains E

6: < integP >Vl?< digit >< digits > We: pe=0.5, re: integP is digit?

Fig.2.syntaxs tree with 'n" child subtree.

7:< digit >VE< digits >< digit > W7: p7=0.4, r7: integP is > 27

8:< digits >V18>< digit >< digit > Wyg: pg=0.6, rg: integP is < 27

9:< floatP >V£< leftP >< rightP > Wo:
P9=0.3,rg: integP contains "." point?

10:< floatP >W—1(>)< leftP >< floatP > Wio: P10=0.4, rio: integP is >

5 digit?

17

Yy Jaeall Jlia¥) JK30 pail) Aadinls goaill Jilal agped

Wi1
11:< floatP >—< Lfirs >< Lsec > Wii: p1=0.3, rq:floatP >
2digit?
w12
12 :< Lfirs >—< digit >< digits > Wi,: p12=0.4,
rip: Lfirs > 2 digit?
W13
13:< Lsec >—< 0 >< digit > Wis: p13=0.3,
rs: digit = 0?
W14
14:< Lsec >—< 1 >< digit > Wiy p14=0.3,
M4: digit =17
W15
15:< rightP >—< digits >< digit > Wis: Po=0.5,
ris:rightP < 107
W16
16:< rightP >—< 1 >< digits > Wit Po=0.5,
re:digits starts with 1?7
w17
17:< leftP > — < digits >< digit > Wi7: p17=0.6, ri7:leftP >
21?
w18
18:< leftP >—< 1 >< digit > Wig: p1g=0.4, rig:leftP >
27
W19
19: < digit > — ¢ Wig: p19=0.4, rig:digit = ""?
w20
20: < digit >—1 Wt p2p=0.3, rzoidigit =
17?
0.3
21: < digit >—0 Wi p1=0.3, r21:digit =
0?

Let's calculate the probability of executing the syntaxs analysis of digital
series

X ="10110.110" which will be done as follows:

S,—>P,(10110).P,(110)

-6
pim(101101) =1x0.5x0.6x0.6x0.6x0.6x0.2x0.2x0.2x0.2x0.2x0.2=4.1472x10

We will calculate the after floating point (decimal)part, where P,(110) using the
next set of stochastic formal production rules(here indicated only the values of
probability "P"):

So 1>< integP ><.>< floatP >
0—'5>< floatP > 0—'5>< leftP >< rightP >
18

Tartous University Journal. Eng. Sciences Series 2020 (9) 34} (4) laall duwtigl) a slalidialall o gh b daala dlaa

O—E< leftP >0—'5>< 1 >< digit >< rightP >
Be1><1>< digit >< rightP >
Be1><1>< digit >< rightP >
0—.3>< 1><1>< ¢ ><rightP >
Bcis><1>< e >< digit >< digits >
0—.3>< 1><1><0><digits >
Bc1><1><0><e>
pﬂoat(110):l>< 0.5x0.6x0.5x 0.5><0.5><0.2><0.2><0.2><0.2><0.2=1.2_X16

The total value of the applying probability of production rules is for executing the syntaxs
analysis for digital constants with floating point is calculated as follows(see.fig.3):

-6 -7
p(x) = P(10110.110)= p_(10110)X P (110)=4.1472x10X1.2x10 =4.9766

-13

x10

b)syntaxis analysis for input string series x,="ab&ba" .
Let's construct the set of stochastic production rules Pg for executing syntaxs

analysis string series Pss(Y)= Pss (‘ab&ba") as follows:

w22
22:< §g > —<serl >< ser2 > W, p1=0.25,
ri: integP ! =""
w23
23: < Sy >—< digit >< & >< ser2 > W3t p1=0.25,
ri: So contains "&"
w24
24:< S, >—< char >< | >< chars > Wyt p1=0.25,

"|"

ry: Sy contains
w2s
25:< Sy >—< digits >< && >< chars > W,s: p1=0.25,
r: Sy contains "&&"
w26 o
26:< Sy >—< char >< || >< digit > Wye: p1=0.25,

: Sy contains "||"

-
\S]

19

Yy Jaeall Jlia¥) JK30 pail) Aadinls goaill Jilal agped

.. chars
digits digits

- o digits . ’ \
digits digits g digits P
N !
digit digits digits digit
chars
|
digit digit
i
\
ﬁ) ﬁ) chars
lf-\\ ',’“\\ ,"\\ ',’ \\ ,"\\ ,,—\\ ,/-\\,/-\\ ,° ~ '/' . ',/ N
{ i R A BRI N A taa L1 f o0 & {ob o) chars
NP N AN NN A T NP S N Nl AR
char \Fhars
LN /’ ‘\\
’ \ '
(a ! I 8
\ /l \ /
N - N //

Fig.3.syntaxis tree of X&Y

20

Tartous University Journal. Eng. Sciences Series 2020 (9) 34} (4) laall duwtigl) a slalidialall o gh b daala dlaa

w27
27:< serl >—< char >< chars > Wy7: p1=0.7,
r,: Nchars > 2
w28 :
28:< chars >—< chars >< char > Wsog: p1=0.3, r3: fir=D>b
W29
29:< char >—< char >< chars > Wyt p1=0.3, r3: fir = a
w30
30:< ser2 >—< b >< chars > W3o: p1=0.3,
ry:ser2.fir =»b
w31
31:< ser2 >—< a >< chars > W3y pi=0.3,
r:: ser2. fir =a
W32
32:< char >—a Wi,: p;=0.2,
ry: curr = a
w33
33:< char >—b W32 p;=0.2,
rs: curr =b
W34
34:< char >— ¢ Wiyt p;=0.1,
ry:char = ¢
W35
35:< ser2 > — & W3ss: p2=0.1, r4: ser2 =
&
w36
36:< serl >— ¢ Wse: p;=0.1,
r:serl = ¢
W27 . - . - .
37:< serl >—< digits >< digits > Wy7: p1=0.7, ry: serlis
digit?

Let's calculate The total value of the applying probability of stochastic production rules for

executing the syntaxs analysis for string constant Y="ab&ba" is calculated as follows:

0.25
< §p >—< serl >< & >< ser2 >

0.7 0.3
—< char >< chars >< & >< ser2 > —»< a >< chars >< & >< ser2 >

0.3
—< a><chars >< & >< ser2 >

0.1 0.3
—»<a>< g ><&><ser2 >»<a>< ¢ >< & ><
chars >

0.3
—»<a>< ¢ >< &><a><chars >

0—'1> ab&ba e —

21

Yy Jaeall Jlia¥) JK30 pail) Aadinls goaill Jilal agped

So the total value of the applying probability of stochastic production rules

Pss(Y)for executing the syntaxs analysis for string constant(see fig.3) is given as:

Pss(Y)= Pss ("ab&ba")=0.25x0.7x0.3x0.3x0.1x0.3x0.3x0.1=1.417x10’5

If the input string series was correctly constructed the probability value of
executing the syntaxs analysis for string constant can represent as:

Ps trad (Y)= Ps trad ("a b&ba")=0 . 255)(0 .7x0. 34)(0 . 22XO .1 3=2. 214x1 0_10

By using the traditional stochastic formal production rules the total value of the
applying probability of production rules required for executing the syntaxs analysis for

both digital and string series is calculated as follows:

-13
Pyrad= Pss ("ab&ba")XPy ('10110.110")=4.9766 x10 X1.417x107°{7.0518X10"

Using production rules 1~5 (stochastic formal grammar) permits to build 4
additional subtree for executing syntaxs analysis of different types structures of
input strings(integer, float, string series).

The related probability values was defined everistically, where for each
secondary element
Pow =YL o<1 Whrere:i—serial sequence number of production rule.

From above it's clear, only the production rule with start element has the
applying probability P=/, and it is possible to generate only on type of series
started with ay terminal element related to LP secondary element and there isn't

any possibility to generate for example string series like 'ab & ba" (see fig.3).

4.INCREASING THE POWER OF MODEFIED STOCHASTIC FORMAL
FORMAL GRAMMAR:

Let increasing the power of modified formal grammar by include

some(suppose 3 rules) production stochastic rules with the same start element 'Sy’
and applying probability " P;' add different right side and applying Boolean
expressions 'ri" , where each production with start element can construct one

specific subtree, so the power of grammar can increasing by the increasing the
22

Tartous University Journal. Eng. Sciences Series 2020 (9) 34} (4) laall duwtigl) a slalidialall o gh b daala dlaa

number of production rules with start element lets add 3 new forms of production

stochastic rules as follows:

Wl(pl, rl
a) So——<Lp ><.><Rp > (20)

This type can be used in executing syntaxs analysis of floating numbers with

floating point or similar expression if Wl(pl, rl) (set of attributes).

W, (PLr2)
b) So < Siscg>< 2
> (21)
Where:
S{,S,-string series, ri-Boolean expression(set of conditions), P; —applying
probability.

This type can be used in executing syntaxs analysis of concatenated string
expressions if the condition Wz(pl, rl (set of attributes) is yield.

C) <SO>M><ser1> <||><ser2>, (22)

This type can be used in executing syntaxs analysis of concatenated string
expressions using Boolean logic operator if the condition W, (PL r3) (set of attributes) is
yield.

As seen it is possible to use any operator(logical, relational, arithmetic, Boolean
logical) and it's possible to add any number of production rules with the start element
keeping the structure of the formal grammar simple as possible.

In generally using different types of expressions forms and operators it is possible
to generate many different structures of string.

Suppose we have 'n," different structure of expressions where can be used 'm;
'operators, so the possibility to generate string series is increased by value p’ as
follows:

p=(ni*my;)-1 (23)

for only starting element and at the same time the constructed formal grammar can
generate very wide and powerful formal language which contains numeric and string
series, so increasing the number of possible to generate string series.

For using the old everisticaly values "p;" of applying probability of production rules,

it possible to keep the values of p; and specify using Boolean expression r, ,i=1-n

23

Yy Jaeall Jlia¥) JK30 pail) Aadinls goaill Jilal agped

for each production rule, in condition set of production rules with the same left
secondary element has primary using Boolean expression r,,i =1-n and the
same applying probability Pj,] =1-n.

Suppose the iteration number of production rules is 5 and taking in
consideration the relations 20, 21, 22 start symbol can modified as follows
(suppose the iteration number of production rule is 1(see fig.2):

As seen from above using the same applying probability 7~ we have "4
additional production rules which can generate all types of constants (integer, float,
char, string series, identifiers) starting with/without using exponential function with
the same start symbol.(see fig.3). By the same way the second production rules
can possible modified as follows:

Now let's see how to construct the syntaxs tree of the input string
X="ab&ba" depending on the stochastic formal grammar where the set of
production rules is defined as follows: While Py, using traditional stochastic formal
grammar can

P, =(0.25)* x(0.4)° x(0.2)" x(0.5)° x(0.3)° = 4.3038x10"*

For demonstration purpose suppose it's necessary to make syntaxs analysis
of identifier also it's necessary to add the next production rules set to the

structured above mentioned stochastic formal grammar(see fig.4).

38: SOM}< digitSer >< stringSer > rg: digitConst is
digit 7, p=0.25 .

39: < digitSer >—2U) 5« gigit >< digits > 3o digits =&?
P=0.3.

40: < digits >—2U0 5 < digit >< digits >, Ty digits <2 ?
P=0.25.

41: < digits >—210 5 < digits >< digit >, Tu: digits > 2 ?
P=0.25.

42: < digits > 220 < digit >< digit >, ra: digits <1 ?
P=0.25.

43: < digits > —) 5 < char >< +>< digit >, r43: char no digit

? ,P=0.25.

24

Tartous University Journal. Eng. Sciences Series 2020 (9) 34} (4) laall duwtigl) a slalidialall o gh b daala dlaa

44: < stringSer > wSpLr39) o o ryg: digitSer gets end?

P=0.2.
Using syntaxs tree for digital constants (see fig.4) we will construct syntaxs tree for

analyzing additional string series as follows:

DigitSer

Fig.4.syntaxs tree for digital input series

Suppose the iteration of each production rule is only one ,so the total number of
expected to use production rules is Niota=44.
The result of syntaxs analysis can recognize two conditions:

a)The syntaxs input string was successfully constructed, then the possible number

of production rules to be use is calculated as follows:

25

Yy Jaeall Jlia¥) JK30 pail) Aadinls goaill Jilal agped

1)For executing syntaxis analysis the digital series X,="//07.11 " the number
of used production rules is N.g=27 so the minimized number of production rules is

calculated as follows: Ned.min= Ntota|—ch=44—27=ﬂ

The ratio of using production rule is Pcd.min :2—Z=0.61 ,t.e the required

time for syntaxs analysis of correct constructed input digital series T,y was
minimized by [T.4.min=17/44=0.38 .

2. For executing syntaxs analysis the string series X, ='ab&ba’ the number

of used production rules is Ng=11 so the minimized of production rules is

calculated as follows:

Nos-min= Noow~Nes-44-1133

the ratio of using Pcs.min :1—411=0.25 and the required time for syntaxs

analysis of correct input string series T.s was minimized by Tes min=33/44=0.75

b)The syntaxs input string was faulty constructed, then the possible number of

production rules to be use for both types string and digital input series is has the

same value t.e(see fig.4) Nrp=Nrs=44| ,so minimized number of production rules is

calculated as follows:

Nes-min= Nioar~Nes-44-44-0

Nes-min= Nigta~Nas-44-44-{)

It means no minimization in both conditions and the required time for syntaxs
analysis takes the maximum value.

The number of production rules with the same and different right side element
is 5, so it will be used for executing syntaxs analysis for digit string X; only one
time, in result the ratio of using production rule with start symbol is Pgaq=1/5=0.2

So it is possible to calculate the speed factor " h ' for syntaxis analysis
digital series X (suppose h,)and string series X, (suppose hg)as the deference
between the number of used production rules in faulty constructed N, condition
and in correctly constructed N condition for digital and string series follow:

a)The speed factor hg for string input series:

hy =A N,—N,=44-11=33

b)The speed factor h, for digital input series:

hy =Agigt =N — Ny =44-27=17

string =

and the enhancing factor of using production rule ratio as:

26

Tartous University Journal. Eng. Sciences Series 2020 (9) 34} (4) laall duwtigl) a slalidialall o gh b daala dlaa

h,, :1—E =0.75 For input Y
44
27 .

h, =1_E =0.3863 For input X

We summarized all these result s in tab].

Table 1. applying number of prod. Rules of stochastic &modified stochastic formal

grammar
Modified stochastic formal Stochastic formal grammar
grammar
Ncs ch Nfs Nfd
Nused prod. 11 27 44 44
number
A (using 0.25 0.61 1 1
ratio)
Nminimized 33 17
Tminimized 075 0386
5 = 100%
\ 90%
\ 80%
70%
==é=stochastic formal H \ 60‘7:
grammar Nfd \ \ 50%
\\ .
stochastic formal \ 40%
grammar Nfs \Lﬂ—- 30%
=l=modified stochastic \ ig?
formal grammar Ncd A °
r T T T 0%
=4--modified stochastic -1?’6 .,\’Q,b O ~o‘?}
formal grammar Ncs Q& @ S
& & S
Q & N S
4\6\ $((\ D O
>
&

Fig.5.Relationship between stochastic &modified stochastic formal grammar

27

Yy Jaeall Jlia¥) JK30 pail) Aadinls goaill Jilal agped

5.Conclusions:

-The recommended approach gives the possibility to construct syntaxs
analysis tree for different input series with n various subtree started with the same
start element which increase the power of generated formal languages.

—Supporting the ability to consist many parent different production rules with
the same left side and various right side ,possible to diagnose and find the best
way for executing the syntaxis analysis.

—through the syntaxs analysis it's possible to discard the set of production
rules with the weight in "false" condition W;,j =1 n="false " so we get the maximum
minimized number of used production rules in syntaxs analysis.

— Using the minimized number of production rules permits minimizing the
required time for executing the syntaxis analysis of input string.

— minimizing the number of applied production rules and discard the
production rules from using in syntaxs analysis permits decrease the required time

for syntaxs analysis of different input string.

REFERENCES:

1.Luis M Augusto. Languages, Machines, and Classical
Computation Paperback — February 4, 2019.

2.C Mag Staff ."Encyclopedia Definition of Compiler”. PCMag.com.
Retrieved 2017

3. Sun, Chengnian ; Le, Vu; Zhang, Qirun; Su, Zhendong (2016). "Toward

Understanding Compiler Bugs in GCC and LLVM". ACM.

4.C Mag Staff ."Encyclopedia Definition of Compiler”. PCMag.com.
Retrieved 2017

5. Silberztein, Max (2013). "NooJ Computational Devices". Formalizing

Natural Languages with NooJ. pp. 1-13. ISBN 978-1-4438-4733-9.
6. 352l 2013¢indl danls Alae "SI aa Liaipall dpaglaill Lolaall dndai " Gappnd

g

7.Dayoub.y,Predictive adaptive dynamic object's traversals
control, Tartous,Volume3 ,N:6 2019.

8. Dayoub.y, converting indexed program formal grammar into free-context
grammar ,Tartous. Volume 5,N:4 ,2020.

28

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Luis+M+Augusto&text=Luis+M+Augusto&sort=relevancerank&search-alias=books
https://www.pcmag.com/encyclopedia/term/40105
http://dl.acm.org/citation.cfm?doid=2931037.2931074
http://dl.acm.org/citation.cfm?doid=2931037.2931074
https://www.pcmag.com/encyclopedia/term/40105

