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oABSTRACT o

In this paper, we propose the study of a class of continuous dynamical systems
that evolve in a Hilbert space setting and are designed to solve inclusion problems
associated with structured monotone operators. These operators take the form of the
sum of a general monotone operator (A) and a monotone cocoercive operator (B).
The motivation behind this work stems from the desire to extend the Regularized
Newton Dynamic with Two Potentials, introduced in the Journal of Optimization
Theory and Applications (JOTA), 2014, by Abbas, Attouch, and Svaiter, to a more
general setting. This extension allows us to tackle a wider range of optimization
problems arising in various fields such as machine learning, signal processing,
control theory, and engineering design.

The main contribution of this paper lies in introducing a novel dynamical
system that combines both general monotone and monotone cocoercive operators
while preserving their individual properties. Specifically, we analyze the existence,
uniqueness, and stability of solutions to these dynamics using tools from nonlinear
analysis and functional calculus. Furthermore, we establish convergence results
under mild assumptions on the problem data. Our approach leverages recent
advances in the field of convex analysis, particularly concerning the behavior of
monotone and cocoercive operators, to provide rigorous mathematical foundations
for the proposed dynamical systems. In summary, our paper introduces a new class
of continuous dynamical systems aimed at solving inclusion problems involving
structured monotone operators. By building upon existing results in convex analysis
and functional calculus, we prove existence, uniqueness, and stability of solutions,
along with providing convergence guarantees under reasonable conditions.
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Introduction

Throughout this paper, we explore the dynamics of continuous systems governed by
structured monotone operators in a Hilbert space framework. Monotone operators play a
crucial role in modern optimization theory, encompassing a wide variety of applications
ranging from classical variational inequalities to advanced machine learning algorithms.
Here, we focus on the class of monotone operators that can be expressed as the sum of a
maximal monotone operator and a monotone cocoercive operator. The goal of studying
Newton's method for solving systems involving two operators is to extend the convergence
analysis and application of this method beyond single operator scenarios. By examining
the interaction between two operators, researchers aim to develop a unified approach that
can effectively address more complex problems, such as nonlinear partial differential
equations. This involves relaxing traditional conditions and establishing new convergence
criteria, which can enhance the robustness and efficiency of the method in practical
applications, ultimately leading to better solutions in fields like physics and engineering.
Before delving into the core concepts and contributions of our work, let us first present
some essential definitions, H is a real Hilbert space with scalar product (.,.)and norm
|I.1l. As a guideline of our study, we use the Newton-like dynamic approach to solving
monotone inclusions which was introduced in [4]. To adapt it to structured monotone
inclusions and splitting methods, this study was developed in [1] and [2], where the
operator is the sum of the subdifferential of a convex lower semicontinuous function, and
the gradient of a convex differentiable function. We wish to extend this study to a non-
potential case, and so enlarge its range of applications. More precisely, we are going to
consider some continuous Newton-like dynamics, which aim at solving structured
monotone inclusions of the following type

0 € Ax + Bx (D

where A: H 3 H is a maximal monotone operator, and B is a monotone cocoercive

operator. Recall that
* An operator A: H =3 H is monotone if
V(x,u) € grA, V(y,v)eEgrA (x—y,u—v)=0

and maximal monotone if, furthermore, gra A is not properly contained in the graph
of any monotone operator B: H = H.

* A monotone operator B: H — H is cocoercive if there exists a constant
B > 0such that forall x,y € H
(Bx —By,x —y)=pB Il Bx — By |

In order to develop the first continuous dynamics, our analysis relies on the

convergence properties of the orbits of the system
v(t) € A(x(1)) (2)
2x(@) +9() +v(®) + B(x(1)) =0 (3)

In (3), A is a positive constant which acts as Levenberg-Marquard regularization
parameter.

When B = 0 makes the system close the Newton method for solving 0 € A(x). The
stationary points of this dynamical system are precisely the zeroes of the operator T = A +
B. Note that, in general, A + B is multivalued nonsmooth operator, witch prevents a direct
use of Newton’s method to solve (1). System (2)-(3) enjoys remarkable properties, and the
Cauchy problem for (2)-(3) is well posed.
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Let us first recall the main lines of this approach [1]. When M is a
differentiable mapping, the classical Newton-Raphson method generates sequences
(X1 ) ken In H verifying

M(xy) + M () (s — X)) =0

When the current iterate is far from the solution, it is convenient to introduce a

positive step size Aty and consider
Xk+1 — xk) —0

M (xi) + M (xz) ( Aty

Unless restrictive assumptions on M are made, this is not a well-posed
equation.
To overcome this difficulty, we consider the following regularized version of
the Newton—Raphson method:
Xk+1 — xk) —0

M) + (Al + M) i

where I is the identity operator on H, and (A;)xen IS a sequence of positive real
numbers (in the particular case of the Gauss—Newton method, this is the Levenberg—
Marquardt regularization method). The algorithm has a natural interpretation as a
time discretized version of the continuous dynamic

A@®)x() + M(x )% () + M(x()) = 0
where x(t) = % is the derivative at time ¢ of the mapping x(.), and A(.)

is a positive real-valued function. By using the derivation rule for the
composition

of smooth mappings, we can rewrite the previous equation as follows: find
(x,v)

solution of the differential-algebraic system

{ v(t) = M(x(t))
A@®)x() +v(t) +v(t) =0

When M: H 3 H is a general maximal operator, the corresponding
differential algebraic

inclusion system can be written

{ v(t) € M(x(t))
AW)x(@) +v(@)+v() =0

It involves an inclusion instead of an equality in the first equation.
2 Materials and Methods

To develop the theoretical foundation for studying the dynamics of continuous
systems governed by structured monotone operators, our materials and methods
primarily rely on techniques drawn from convex analysis, functional calculus, and
differential equations. Below, we outline the key components of our methodology.

1. Preliminaries from Convex Analysis: We begin by reviewing fundamental
notions in convex analysis, including convex functions, subdifferential mappings,
and monotone operators. Of particular importance is the concept of a maximally
monotone operator—an essential prerequisite for analyzing the well-posedness of our
proposed dynamical system. Maximally monotone operators exhibit favorable
properties, allowing for powerful existence, uniqueness, and stability results
regarding solutions to our target inclusion problems.

2. Cocoercive Operators: Next, we discuss cocoercivity, a stronger notion than
monotonicity, which implies the existence of certain error bounds. For cocoercive
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operators, additional regularity properties hold, enabling faster convergence rates and
improved robustness against perturbations. Understanding the relationship between
cocoercive and monotone operators will allow us to combine them effectively in our
subsequent analyses.

3. Structured Monotone Operators: With the necessary background established, we
proceed to examine structured monotone operators—specifically, those expressible as the
sum of a general maximal monotone operator and a monotone cocoercive operator.
Exploring how these different types of operators interact within the same system is critical
for understanding the overall behavior of our targeted dynamics.

4. Existence, Uniqueness, and Stability Results: Leveraging the properties of
maximally monotone and cocoercive operators, we derive existence, uniqueness, and
stability results for solutions to our proposed dynamical system. Employing standard
techniques from ordinary differential equation (ODE) theory, coupled with arguments
rooted in the theory of nonexpansive mappings, enables us to establish a solid basis for
subsequent convergence analyses.

By combining these diverse elements, our materials and methods lay the groundwork
for developing a comprehensive understanding of continuous dynamics driven by
structured monotone operators. Ultimately, this knowledge serves as a springboard for
addressing challenging optimization problems across numerous application domains.

3 Results: Convergence of continuous Dynamic
By applying the Minty transformation to A,system (2)-(3)
v(t) € A(x(1))
(@) +v(0) +v(®) + B(x(6)) =0

can be reformulated in a form which is relevant to the Cauchy-Lipschitz theorem, see

[11, [3], [4].

First set u = %and rewrite (3) as

x(t) + uv(t) + pv(t) + uB(x(t)) = 0 (4)
By introducing the new unknown function z(:) = x(-) + uv(-), and setting
]ﬁ‘ = (I + pA)~1 the resolvent of index u > 0 of A, we will obtain the equivalent
dynamic

x(t) = Ji(2(V) (5a)
2(6) + pA,(z(0) + uB (JA (z(5) ) = 0 (5b)

If z is a solution of (5 b), then (x, v) with
x(t) = Ji(z())
v(t) = Aﬂ(z(t))

is solution of (2)-(3). As a nice feature of system (5a)-(5b), let us stress the fact that
the operators J4:H - H and 4, =%(1—]{}):H — H are everywhere defined and

Lipschitz continuous, which makes this system relevant to Cauchy-Lipschitz theorem.

By using The fact, The operator B is maximal monotone Lipschitz continuous
operator.

Thus, by specializing Theorem 3.1. of [1] to our situation, we obtain that the Cauchy
problem for (2)-(3) is well-posed. More precisely,

Theorem 2.1. Let A > 0 be a positive constant. Suppose that A:H 3 H be a
maximal monotone operator, and that B: H — H is a cocoercive operator on H. Let
(x9,v9) € H X H be such that v, € A.
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Then, there exists a unique strong global solution (x(-), v(:)): [0, +oo[—> H X
H of the Cauchy problem

v(t) € A(x(t)) (6)
Ax(t) + () + v(t) + B(x(®)) = 0 (7
x(0) = x5, v(0) =y (8)

In the above statement, we use the notion of strong solution, as defined in [1],
and [4].

We will study the convergence properties of the orbits of system (6)-(7), whose
existence is guaranteed by Theorem 2.1 .
We call
S={z€eH;0€ A(z) + B(2)}
The solution set of problem (1), and we assume that S + @.
Let us show the next approach to the asymptotic analysis of system

2(6) + pA, (z(0) + uB (JA (z(5) ) = 0 (5b)
with formula expressing x(t) and v(t) in terms of z(t)
x(t) = Ji(z()) )
v(t) = A,(2(1)) (10)

As a key ingredient in the asymptotic of (5b) we will use that the operator A,
is  u-cocoercive, and we have that the operator B: H = H is S-cocoercive.

Proposition 3.1. Let A:H = H be a maximal monotone operator. Then, for
any positive constant u, the Yosida approximation A, of index u of A is u-
cocoercive and A, is firmly nonexpansive.

We will show that A, + B is a cocoercive operator.

Definition 3.1. Let D be nonempty subset of H and let T:D — H. Then T is

(i) firmly nonexpansive if

(Vxe€D)VyeD)ITx =Ty 1>+l U =Tx— U =Ty I*’<ll x — y II.?
(i1 ) nonexpansive if it is Lipschitz continuous with constant 1, i.e,
(Vxe€D)(VyeD)ITx—Tyl<lx—y

Definition 3.2. An operator T: H — H is a - averaged with constant 0 < a <
1, if there exists a nonexpansive operator R: H — H such that T = (1 — a)I + aR.

The notions of cocoerciveness and a-averaged are intimately related, we have
that

*T:H — H is -cocoercive iff is % - averaged [5]

Definition 3.3. A is firmly positive if

(i) (v,x —y) = 0forall v € A(x) and y € A~1(0), and

(ii ) there exists y, € A71(0) such that 0 € A(x) whenever v € A(x) and
(v,x - yO) = 0.

A is demipositive if (i) and (ii) hold and y, also satisfies

(iii) the conditions x,, — x,v, € A(x,), v, bounded, and lim,,(v,,, x,, — vo) =
0 imply 0 € A(x).

Lemma 3.1. Take T:H —» H and a €]0,1[. Then the following properties are
equivalent

(i) T is a — averaged.
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(i) (Y(x,y) € H X H) | Tx = Ty I2<ll x =y I2= =21 (I = T)x = (I = Dy I.

Proof. (i) « (i) Set R = (1—=) I +=T and fixx,y € H x H. Then
I Rx — Ry I (1 1)" P+ LT —Ty 1 1(1 1)
X — =1—-=)llx— — | Tx — ——|1-=
y a y a y a a
Il (I-—T)x—U-T)y I
In other words,

1—«a
allx—ylII>?=IIR—Ry 1) =llx—y > = Tx—Ty IIZ—T

Il I=T)x— =Ty II? (11)

Now observe that (i) & R is noexpansive < the left hand side of (11) is nonnegative
s ().

Lemma 3.2. Let (T;),<i<m be a finite family of operators from H to H, let (w;)1<i<m
be real numbers in ]0,1], and let (@;)1<;<m be real numbers in ]0,1[  such that, for every
i €{1,..,m}, T;is a; — averaged. Then

Yt w; T; is a - averaged, with @ = max; <<, @;.

Proof. Set T = Y1, w; T; and fix x,y € H X H. Since & = max;<;<m,a;, Lemma 3.1.
(i) yields

1—a
(Vi € {1, .., mDITix — Tyyll* + ‘

I —T)x— I —=T)ylI* <ll x —y I?

L

Hence, by the convexity of |I-I2,
| Tx — Ty ||2+1?Ta II-Tx-U-Dyl* =

m m

2 m m 2
i i=1 i=1 i=1

i=1

m m
2 1—«a
52@- IT.x — Tyl +Z
i = %

i=1

<lx—yl? (12)

Logl(T = Tx = (1 = Tyl

We have that
. . . g . 1 .
* A, is u - cocoercive & A, is firmly nonexpansive - averaged;
. . . . . 1
e Bis B -cocoercive & BB is firmly nonexpansive - averaged.

By lemma 3.2. we have that uA, + BB is % - averaged then firmly nonexpansive and

cocoercive.

A classical result from Baillon and Brezis [10] states that a general maximal
monotone operator generates trajectories which converges weakly in ergodic sense.

Indeed, Bruck [6] proved that weak convergence holds when A is maximal monotone
and demipositive. This last property is satisfied by two important classes of maximal
monotone operators, namely the subdifferentials of closed convex functions, and the
cocoercive operators. One consult [7] for a recent account on this subject. Let us state the
convergence result in the cocoercive case
4. Discussion

Proposition 4.1. Let T:H - H be a maximal monotone operator which is
cocoercive. Let us assume that T~1(0) is non -empty. Then, for any trajectory z(-) of a
classical differential equation

2@+ T(z() =0 (13)
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The following properties hold, as t — +oo
i) z(t) converges weakly in H to some element z € T~1(0);
i) Z(t) converges strongly in H to zero.
By Proposition 4.1., using (9), and the cocoercive property of pA,(:) +

uB (]ﬁ‘(-)), we deduce that

z(t) converges weakly to some element z € (4, + B)_l(O) = (A+B)71(0)
and z(t) converges strongly to zero, as t —» +oo.

From z(t) = x(t) + puv(t) and that z(t) = x(t) + uv(t)

we deduce x(t) converges weakly to an element of S;B(x(t)) converges
strongly to B(Z), and we finally obtain v(t) converges strongly to —B(2).

5. Conclusion

In a Hilbert space context, we have presented a novel class of continuous
dynamical systems tailored to address inclusion problems subjected to structured
monotone operators of the composite type A + B, wherein A signifies a maximal
monotone operator and B denotes a monotone cocoercive operator [8]. Through
careful examination, we have established the cornerstones required for successful
deployment of these dynamics: namely, we have proven existence and uniqueness of
solutions, thereby ensuring sound footing for subsequent investigations. Building
upon this solid base, we have conducted an in-depth analysis elucidating the global
convergence characteristics inherent to this family of dynamical systems [7,9].
Collectively, these findings offer promising perspectives towards resolving intricate
optimization challenges characterized by structured monotone operators, thus
opening avenues for advancements spanning multiple disciplines.
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