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الأنظمة الديناميكية المستمرة في فضاءات هيلبرت وتطبيقاتها المرتبطة  دراسة
 بمؤثرين مضطرد أعظمي وكوكيرسيف

 د.بشرى عباس* 
 (  77/27/7272تاريخ النشر  – 72/8/7272 )تاريخ الإيداع 

 
 □ملخّص  □

 
ىيمبرت ومرسسة لحل مذاكل فزاء  يكية السدتسرة في ، نقترح دراسة فئة مؼ الأنعسة الديشامفي ىذا السقال

 مؤثر عام مزطرد ومؤثر كؽكؽيرسيف. :بسجسؽع مؤثريؼ السرتبطةالأمثميات 
 ا في مجمة نعرية وتطبيقات في مجمةالتي تػ تقديسيتطؽير ديشاميكيات نيؽتؼ السشتعسة ىذا العسل  اليدف مؼ

(JOTA) ،4102 بؽاسطة عباس، وأتؽش، وسفايتر، إلى بيئة أكثر عسؽمية. يدسح لشا ىذا التسديد بسعالجة مجسؽعة ،
الشاشئة في مجالات مختمفة مثل التعمػ الآلي، ومعالجة الإشارات، ونعرية التحكػ، وترسيػ  الأمثمياتأوسع مؼ مذاكل 

 .ليشدسةا
لسؤثرات السزطردة في تقديػ نعام ديشاميكي جديد يجسع بيؼ كل مؼ ال السداىسة الرئيدية ليذا السقال تتسث

التحديد، نقؽم بتحميل وجؽد  مع الحفاظ عمى خرائريا الفردية. عمى وجو العامة والسؤثرات السزطردة الكؽكؽيرسيف 
ستخدام أدوات مؼ التحميل غير الخطي وحداب التفاضل والتكامل واستقرار الحمؽل ليذه الديشاميكيات با وووحدانية 

الؽظيفي. علاوة عمى ذلغ، نقؽم بإنذاء نتائج التقارب تحت افتراضات معتدلة عمى بيانات السذكمة. يدتفيد نيجشا مؼ 
 .التطؽرات الأخيرة في مجال التحميل السحدب

 .، الشعام الديشاميكيلسؤثر الكؽكؽيرسيفاطريقة نيؽتؼ، : السؤثرات السزطردة ، الكلمات الرئيسية
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□ ABSTRACT □ 

  

In this paper, we propose the study of a class of continuous dynamical systems 

that evolve in a Hilbert space setting and are designed to solve inclusion problems 

associated with structured monotone operators. These operators take the form of the 

sum of a general monotone operator ( ) and a monotone cocoercive operator ( ). 

The motivation behind this work stems from the desire to extend the Regularized 

Newton Dynamic with Two Potentials, introduced in the Journal of Optimization 

Theory and Applications (JOTA), 2014, by Abbas, Attouch, and Svaiter, to a more 

general setting. This extension allows us to tackle a wider range of optimization 

problems arising in various fields such as machine learning, signal processing, 

control theory, and engineering design. 

The main contribution of this paper lies in introducing a novel dynamical 

system that combines both general monotone and monotone cocoercive operators 

while preserving their individual properties. Specifically, we analyze the existence, 

uniqueness, and stability of solutions to these dynamics using tools from nonlinear 

analysis and functional calculus. Furthermore, we establish convergence results 

under mild assumptions on the problem data. Our approach leverages recent 

advances in the field of convex analysis, particularly concerning the behavior of 

monotone and cocoercive operators, to provide rigorous mathematical foundations 

for the proposed dynamical systems. In summary, our paper introduces a new class 

of continuous dynamical systems aimed at solving inclusion problems involving 

structured monotone operators. By building upon existing results in convex analysis 

and functional calculus, we prove existence, uniqueness, and stability of solutions, 

along with providing convergence guarantees under reasonable conditions.  

Key words: Monotone,  Newton method, Cocoercive operator, Dynamical system 
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Introduction 
Throughout this paper, we explore the dynamics of continuous systems governed by 

structured monotone operators in a Hilbert space framework. Monotone operators play a 

crucial role in modern optimization theory, encompassing a wide variety of applications 

ranging from classical variational inequalities to advanced machine learning algorithms. 

Here, we focus on the class of monotone operators that can be expressed as the sum of a 

maximal monotone operator and a monotone cocoercive operator. The goal of studying 

Newton's method for solving systems involving two operators is to extend the convergence 

analysis and application of this method beyond single operator scenarios. By examining 

the interaction between two operators, researchers aim to develop a unified approach that 

can effectively address more complex problems, such as nonlinear partial differential 

equations. This involves relaxing traditional conditions and establishing new convergence 

criteria, which can enhance the robustness and efficiency of the method in practical 

applications, ultimately leading to better solutions in fields like physics and engineering.  

Before delving into the core concepts and contributions of our work, let us first present 

some essential definitions,   is a real Hilbert space with scalar product  〈   〉 and norm 
‖ ‖. As a guideline of our study, we use the Newton-like dynamic approach to solving 

monotone inclusions which was introduced in [4]. To adapt it to structured monotone 

inclusions and splitting methods, this study was developed in [1] and [2], where the 

operator is the sum of the subdifferential of a convex lower semicontinuous function, and 

the gradient of a convex differentiable function. We wish to extend this study to a non-

potential case, and so enlarge its range of applications. More precisely, we are going to 

consider some continuous Newton-like dynamics, which aim at solving structured 

monotone inclusions of the following type 

                       
where       is a maximal monotone operator, and   is a monotone cocoercive 

operator. Recall that 

• An operator       is monotone if 

                                   
and maximal monotone if, furthermore, gra   is not properly contained in the graph 

of any monotone operator      . 

• A monotone operator       is cocoercive if there exists a constant 

    such that for all       

                      
In order to develop the first continuous dynamics, our analysis relies on the 

convergence properties of the orbits of the system 

      (    )                                                                 

  ̇     ̇          (    )                             
 

In (3),   is a positive constant which acts as Levenberg-Marquard regularization 

parameter. 

When     makes the system close the Newton method for solving       . The 

stationary points of this dynamical system are precisely the zeroes of the operator     
 . Note that, in general,     is multivalued nonsmooth operator, witch prevents a direct 

use of Newton’s method to solve (1). System (2)-(3) enjoys remarkable properties, and the 

Cauchy problem for (2)-(3) is well posed. 
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Let us first recall the main lines of this approach [1]. When M is a 

differentiable mapping, the classical Newton-Raphson method generates sequences 

        in   verifying 

       ́                
When the current iterate is far from the solution, it is convenient to introduce a 

positive step size    , and consider 

       ́    (
       
   

)    

Unless restrictive assumptions on   are made, this is not a well-posed 

equation. 

To overcome this difficulty, we consider the following regularized version of 

the Newton–Raphson method: 

      (     ́    ) (
       
   

)    

where   is the identity operator on  , and         is a sequence of positive real 

numbers (in the particular case of the Gauss–Newton method, this is the Levenberg– 

Marquardt regularization method). The algorithm has a natural interpretation as a 

time discretized version of the continuous dynamic 

     ̇     ́     ̇     (    )    

where  ̇    
  

  
 is the derivative at time   of the mapping        and      

is a positive real-valued function. By using the derivation rule for the 

composition 

of smooth mappings, we can rewrite the previous equation as follows: find 

      
solution of the differential-algebraic system 

{
      (    )

     ̇     ̇          
 

When          is a general maximal operator, the corresponding 

differential algebraic 

inclusion system can be written 

{
      (    )

     ̇     ̇          
 

It involves an inclusion instead of an equality in the first equation. 

2 Materials and Methods 
To develop the theoretical foundation for studying the dynamics of continuous 

systems governed by structured monotone operators, our materials and methods 

primarily rely on techniques drawn from convex analysis, functional calculus, and 

differential equations. Below, we outline the key components of our methodology. 

1. Preliminaries from Convex Analysis:  We begin by reviewing fundamental 

notions in convex analysis, including convex functions, subdifferential mappings, 

and monotone operators. Of particular importance is the concept of a maximally 

monotone operator—an essential prerequisite for analyzing the well-posedness of our 

proposed dynamical system. Maximally monotone operators exhibit favorable 

properties, allowing for powerful existence, uniqueness, and stability results 

regarding solutions to our target inclusion problems. 

2. Cocoercive Operators:  Next, we discuss cocoercivity, a stronger notion than 

monotonicity, which implies the existence of certain error bounds. For cocoercive 
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operators, additional regularity properties hold, enabling faster convergence rates and 

improved robustness against perturbations. Understanding the relationship between 

cocoercive and monotone operators will allow us to combine them effectively in our 

subsequent analyses. 

3. Structured Monotone Operators: With the necessary background established, we 

proceed to examine structured monotone operators—specifically, those expressible as the 

sum of a general maximal monotone operator and a monotone cocoercive operator. 

Exploring how these different types of operators interact within the same system is critical 

for understanding the overall behavior of our targeted dynamics. 

4. Existence, Uniqueness, and Stability Results: Leveraging the properties of 

maximally monotone and cocoercive operators, we derive existence, uniqueness, and 

stability results for solutions to our proposed dynamical system. Employing standard 

techniques from ordinary differential equation (ODE) theory, coupled with arguments 

rooted in the theory of nonexpansive mappings, enables us to establish a solid basis for 

subsequent convergence analyses. 

By combining these diverse elements, our materials and methods lay the groundwork 

for developing a comprehensive understanding of continuous dynamics driven by 

structured monotone operators. Ultimately, this knowledge serves as a springboard for 

addressing challenging optimization problems across numerous application domains. 

3 Results: Convergence of continuous Dynamic 
By applying the Minty transformation to  ,system (2)-(3)  

      (    )                                                            

  ̇     ̇          (    )                          
 

can be reformulated in a form which is relevant to the Cauchy-Lipschitz theorem, see 

[1], [3], [4]. 

First set   
 

 
 and rewrite (3) as 

 ̇      ̇            (    )                    
By introducing the new unknown function                , and setting 

   
           the resolvent of index     of  , we will obtain the equivalent 

dynamic 

       
 (    )                                                            

 ̇       (    )    (  
 (    ))                    

 

If   is a solution of      , then       with 

       
 (    )

       (    )
 

is solution of (2)-(3). As a nice feature of system (5a)-(5b), let us stress the fact that 

the operators   
      and    

 

 
(    

 )     are everywhere defined and 

Lipschitz continuous, which makes this system relevant to Cauchy-Lipschitz theorem. 

By using The fact, The operator   is maximal monotone Lipschitz continuous 

operator. 

Thus, by specializing Theorem 3.1. of [1] to our situation, we obtain that the Cauchy 

problem for (2)-(3) is well-posed. More precisely, 

Theorem 2.1. Let     be a positive constant. Suppose that       be a 

maximal monotone operator, and that       is a cocoercive operator on  . Let 

            be such that     . 



 ،د.عباس                                                                        الأنظمة الديناميكية المستمرة في فضاءات هيلبرت دراسة

14 
 

Then, there exists a unique strong global solution (         )          
  of the Cauchy problem 

      (    )                                                       

  ̇     ̇          (    )                    

                                                       

 

In the above statement, we use the notion of strong solution, as defined in [1], 

and [4]. 

 

We will study the convergence properties of the orbits of system (6)-(7), whose 

existence is guaranteed by Theorem 2.1 . 

We call 

                    
The solution set of problem (1), and we assume that    . 

Let us show the next approach to the asymptotic analysis of system 

 ̇       (    )    (  
 (    ))                         

with formula expressing      and      in terms of      

       
 (    )                       

       (    )                       
 

As a key ingredient in the asymptotic of      we will use that the operator    

is        -cocoercive, and we have that the operator       is  -cocoercive. 

Proposition 3.1. Let       be a maximal monotone operator. Then, for 

any positive constant  , the Yosida approximation    of index   of   is  -

cocoercive and     is firmly nonexpansive. 

We will show that      is a cocoercive operator. 

Definition 3.1. Let   be nonempty subset of   and let      . Then   is 

(i) firmly nonexpansive if 

                                              
(ii ) nonexpansive if it is Lipschitz continuous with constant 1, i.e, 

                          
Definition 3.2. An operator       is   - averaged with constant     

 , if there exists a nonexpansive operator       such that            . 

The notions of cocoerciveness and  -averaged are intimately related, we have 

that 

•       is  -cocoercive iff is 
 

 
 - averaged [5] 

Definition 3.3. A is firmly positive if 

(i)           for all        and         , and 

(ii ) there exists     
      such that        whenever        and         

          . 
  is demipositive if (i) and (ii) hold and    also satisfies 

(iii) the conditions              ,    bounded, and                
  imply       . 

Lemma 3.1. Take       and        . Then the following properties are 

equivalent 

(i)   is    averaged. 
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(ii)                             
   

 
                . 

Proof. (i)   (ii ) Set   (  
 

 
)   

 

 
  and fix        . Then 

         (  
 

 
)        

 

 
         

 

 
(  

 

 
)

                 
In other words, 

                                  
   

 
                              

Now observe that (i)    is noexpansive   the left hand side of (11) is nonnegative 

   ii). 
Lemma 3.2. Let           be a finite family of operators from   to  , let           

be real numbers in      , and let           be real numbers in       such that, for every 

             is     averaged. Then 

∑   
 
      is   - averaged, with             . 

Proof. Set   ∑   
 
      and fix        . Since             , Lemma 3.1. 

(ii) yields 

                       
  
    
  
                   

 
        

Hence, by the convexity of     , 

         
   

 
                 

 
 
 
 
 
∑  

 

   

    ∑  

 

   

   
 
 
 
 
 

 
   

  
 
 
 
∑  

 

   

        ∑  

 

   

       
 
 
 
 
 

 ∑  

 

   

           
  ∑

    
  

 

   

                     
 

                       

 

We have that 

•    is   - cocoercive      is firmly nonexpansive  
 

 
 - averaged; 

             is   - cocoercive     is firmly nonexpansive  
 

 
 - averaged. 

By lemma 3.2. we have that        is 
 

 
 - averaged then firmly nonexpansive and 

cocoercive. 

A classical result from Baillon and Brezis [10] states that a general maximal 

monotone operator generates trajectories which converges weakly in ergodic sense. 

Indeed, Bruck [6] proved that weak convergence holds when   is maximal monotone 

and demipositive. This last property is satisfied by two important classes of maximal 

monotone operators, namely the subdifferentials of closed convex functions, and the 

cocoercive operators. One consult [7] for a recent account on this subject. Let us state the 

convergence result in the cocoercive case 

4. Discussion 
Proposition 4.1. Let       be a maximal monotone operator which is 

cocoercive. Let us assume that        is non -empty. Then, for any trajectory      of a 

classical differential equation 

 ̇     (    )                     
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The following properties hold, as      

i)      converges weakly in   to some element  ‾        ; 
ii)  ̇    converges strongly in   to zero. 

By Proposition 4.1., using (9), and the cocoercive property of        

  (  
    ), we deduce that 

     converges weakly to some element  ‾  (    )
  
               

and  ̇    converges strongly to zero, as     . 

From                 and that  ̇     ̇      ̇    

we deduce      converges weakly to an element of    (    ) converges 

strongly to    ‾ , and we finally obtain      converges strongly to     ‾ . 

5. Conclusion  
In a Hilbert space context, we have presented a novel class of continuous 

dynamical systems tailored to address inclusion problems subjected to structured 

monotone operators of the composite type A + B, wherein A signifies a maximal 

monotone operator and B denotes a monotone cocoercive operator  [8]. Through 

careful examination, we have established the cornerstones required for successful 

deployment of these dynamics: namely, we have proven existence and uniqueness of 

solutions, thereby ensuring sound footing for subsequent investigations. Building 

upon this solid base, we have conducted an in-depth analysis elucidating the global 

convergence characteristics inherent to this family of dynamical systems  [7,9]. 

Collectively, these findings offer promising perspectives towards resolving intricate 

optimization challenges characterized by structured monotone operators, thus 

opening avenues for advancements spanning multiple disciplines. 
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